We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Weighted sieves are used to detect numbers with at most S prime factors with $S \in \mathbb{N}$ as small as possible. When one studies problems with two variables in somewhat symmetric roles (such as Chen primes, that is primes p such that $p+2$ has at most two prime factors), one can utilise the switching principle. Here we discuss how different sieve weights work in such a situation, concentrating in particular on detecting a prime along with a product of at most three primes.
As applications, we improve on the works of Yang and Harman concerning Diophantine approximation with a prime and an almost prime, and prove that, in general, one can find a pair $(p, P_3)$ when both the original and the switched problem have level of distribution at least $0.267$.
In this paper, we show that the diffraction of the primes is absolutely continuous, showing no bright spots (Bragg peaks). We introduce the notion of counting diffraction, extending the classical notion of (density) diffraction to sets of density zero. We develop the counting diffraction theory and give many examples of sets of zero density of all possible spectral types.
Étant donnée une suite $A = (a_n)_{n\geqslant 0}$ d’entiers naturels tous au moins égaux à 2, on pose $q_0 = 1$ et, pour tout entier naturel n, $q_{n+1} = a_n q_n$. Tout nombre entier naturel $n\geqslant 1$ admet une unique représentation dans la base A, dite de Cantor, de la forme
$$ \begin{align*} S = \sum_{n \leqslant x}\Lambda(n) f(n) \end{align*} $$
où $\Lambda $ est la fonction de von Mangoldt et f une fonction fortement multiplicative en base A. L’estimation des sommes de type I et II associées repose sur le bon contrôle de transformées de Fourier discrètes de fonctions construites à partir de f par décalage dans la numération en base A. Cette approche pouvant échouer si la suite $(a_n)_{n\geqslant 0}$ est trop irrégulière, nous introduisons la notion de base de Cantor tempérée et obtenons dans ce cadre une majoration générale de la somme S.
Nous étudions plusieurs exemples dans la base $A = (j+2)_{j\geqslant 0}$, dite factorielle. En particulier, si $s_A$ désigne la fonction somme de chiffres dans cette base et p parcourt la suite des nombres premiers, nous montrons que la suite $(s_A(p))_{p\in \mathcal {P}}$ est bien répartie dans les progressions arithmétiques, et que la suite $(\alpha s_A(p))_{p\in \mathcal {P}}$ est équirépartie modulo $1$ pour tout nombre irrationnel $\alpha $.
We provide a uniform bound on the partial sums of multiplicative functions under very general hypotheses. As an application, we give a nearly optimal estimate for the count of $n \le x$ for which the Alladi–Erdős function $A(n) = \sum_{p^k \parallel n} k p$ takes values in a given residue class modulo q, where q varies uniformly up to a fixed power of $\log x$. We establish a similar result for the equidistribution of the Euler totient function $\phi(n)$ among the coprime residues to the ‘correct’ moduli q that vary uniformly in a similar range and also quantify the failure of equidistribution of the values of $\phi(n)$ among the coprime residue classes to the ‘incorrect’ moduli.
We show that for any set D of at least two digits in a given base b, almost all even integers taking digits only in D when written in base b satisfy the Goldbach conjecture. More formally, if $\mathcal {A}$ is the set of numbers whose digits base b are exclusively from D, almost all elements of $\mathcal {A}$ satisfy the Goldbach conjecture. Moreover, the number of even integers in $\mathcal {A}$ which are less than X and not representable as the sum of two primes is less than $|\mathcal {A}\cap \{1,\ldots ,X\}|^{1-\delta }$.
Let X be a smooth projective variety defined over a number field K. We give an upper bound for the generalised greatest common divisor of a point $x\in X$ with respect to an irreducible subvariety $Y\subseteq X$ also defined over K. To prove the result, we establish a rather uniform Riemann–Roch-type inequality.
Erdös and Selfridge first showed that the product of consecutive integers cannot be a perfect power. Later, this result was generalized to polynomial values by various authors. They demonstrated that the product of consecutive polynomial values cannot be the perfect power for a suitable polynomial. In this article, we consider a related problem to the product of consecutive integers. We consider all sequences of polynomial values from a given interval whose products are almost perfect powers. We study the size of these powers and give an asymptotic result. We also define a group theoretic invariant, which is a natural generalization of the Davenport constant. We provide a non-trivial upper bound of this group theoretic invariant.
Describing the equality conditions of the Alexandrov–Fenchel inequality [Ale37] has been a major open problem for decades. We prove that in the case of convex polytopes, this description is not in the polynomial hierarchy unless the polynomial hierarchy collapses to a finite level. This is the first hardness result for the problem and is a complexity counterpart of the recent result by Shenfeld and van Handel [SvH23], which gave a geometric characterization of the equality conditions. The proof involves Stanley’s [Sta81] order polytopes and employs poset theoretic technology.
For fixed m and a, we give an explicit description of those subsets of ${\mathbb F}_{q}$, q odd, for which both x and $mx+a$ are quadratic residues (and other combinations). These results extend and refine results that date back to Gauss.
Liu [‘On a congruence involving q-Catalan numbers’, C. R. Math. Acad. Sci. Paris358 (2020), 211–215] studied congruences of the form $\sum _{k=0}^{n-1} q^k\mathcal {C}_k$ modulo the cyclotomic polynomial $\Phi _n(q)^2$, provided that $n\equiv \pm 1\pmod 3$. Apparently, the case $n\equiv 0\pmod 3$ has been missing from the literature. Our primary purpose is to fill this gap. In addition, we discuss a certain fascinating link to Dirichlet character sum identities.
We devise schemes for producing, in the least possible time, p identical objects with n agents that work at differing speeds. This involves halting the process to transfer production across agent types. For the case of two types of agent, we construct schemes based on the Euclidean algorithm that seeks to minimize the number of pauses in production.
For any positive integer n, let $\sigma (n)$ be the sum of all positive divisors of n. We prove that for every integer k with $1\leq k\leq 29$ and $(k,30)=1,$
for all $K\in \mathbb {N},$ which gives a positive answer to a problem posed by Pongsriiam [‘Sums of divisors on arithmetic progressions’, Period. Math. Hungar. 88 (2024), 443–460].
For $g \geqslant 2$, we show that the number of positive integers at most X which can be written as sum of two base g palindromes is at most ${X}/{\log^c X}$. This answers a question of Baxter, Cilleruelo and Luca.
We establish a q-analogue of a supercongruence related to a supercongruence of Rodriguez-Villegas, which extends a q-congruence of Guo and Zeng [‘Some q-analogues of supercongruences of Rodriguez-Villegas’, J. Number Theory145 (2014), 301–316]. The important ingredients in the proof include Andrews’ $_4\phi _3$ terminating identity.
Let $k\geq 4$ be an integer. We prove that the set $\mathcal {O}$ of all nonzero generalised octagonal numbers is a k-additive uniqueness set for the set of multiplicative functions. That is, if a multiplicative function $f_k$ satisfies the condition
for arbitrary $x_1,\ldots ,x_k\in \mathcal {O}$, then $f_k$ is the identity function $f_k(n)=n$ for all $n\in \mathbb {N}$. We also show that $f_2$ and $f_3$ are not determined uniquely.
For $\lambda \in (0,\,1/2]$ let $K_\lambda \subset \mathbb {R}$ be a self-similar set generated by the iterated function system $\{\lambda x,\, \lambda x+1-\lambda \}$. Given $x\in (0,\,1/2)$, let $\Lambda (x)$ be the set of $\lambda \in (0,\,1/2]$ such that $x\in K_\lambda$. In this paper we show that $\Lambda (x)$ is a topological Cantor set having zero Lebesgue measure and full Hausdorff dimension. Furthermore, we show that for any $y_1,\,\ldots,\, y_p\in (0,\,1/2)$ there exists a full Hausdorff dimensional set of $\lambda \in (0,\,1/2]$ such that $y_1,\,\ldots,\, y_p \in K_\lambda$.
holds for all $A \subset \mathbb R$, and for all convex functions f which satisfy an additional technical condition. This technical condition is satisfied by the logarithmic function, and this fact can be used to deduce a sum-product estimate
for some $c\gt 0$. Previously, no sum-product estimate over $\mathbb R$ with exponent strictly greater than $3/2$ was known for any number of variables. Moreover, the technical condition on f seems to be satisfied for most interesting cases, and we give some further applications. In particular, we show that
\begin{equation*}|AA| \leq K|A| \implies \,\forall d \in \mathbb R \setminus \{0 \}, \,\, |\{(a,b) \in A \times A : a-b=d \}| \ll K^C |A|^{\frac{2}{3}-c^{\prime}},\end{equation*}
Liu [‘Supercongruences for truncated Appell series’, Colloq. Math.158(2) (2019), 255–263] and Lin and Liu [‘Congruences for the truncated Appell series $F_3$ and $F_4$’, Integral Transforms Spec. Funct.31(1) (2020), 10–17] confirmed four supercongruences for truncated Appell series. Motivated by their work, we give a new supercongruence for the truncated Appell series $F_{1}$, together with two generalisations of this supercongruence, by establishing its q-analogues.