To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We explain an algorithm to calculate Arthur’s weighted orbital integral in terms of the number of rational points on the fundamental domain of the associated affine Springer fiber. The strategy is to count the number of rational points of the truncated affine Springer fibers in two ways: by the Arthur–Kottwitz reduction and by the Harder–Narasimhan reduction. A comparison of results obtained from these two approaches gives recurrence relations between the number of rational points on the fundamental domains of the affine Springer fibers and Arthur’s weighted orbital integrals. As an example, we calculate Arthur’s weighted orbital integrals for the groups ${\textrm {GL}}_{2}$ and ${\textrm {GL}}_{3}$.
We generalise two quartic surfaces studied by Swinnerton-Dyer to give two infinite families of diagonal quartic surfaces which violate the Hasse principle. Standard calculations of Brauer–Manin obstructions are exhibited.
Girstmair [‘On an irreducibility criterion of M. Ram Murty’, Amer. Math. Monthly112(3) (2005), 269–270] gave a generalisation of Ram Murty’s irreducibility criterion. We further generalise these criteria.
We give a corrected version of our previous lower bound on the value set of binomials (Canad. Math. Bull., v.63, 2020, 187–196). The other results are not affected.
Consider the algebraic function $\Phi _{g,n}$ that assigns to a general $g$-dimensional abelian variety an $n$-torsion point. A question first posed by Klein asks: What is the minimal $d$ such that, after a rational change of variables, the function $\Phi _{g,n}$ can be written as an algebraic function of $d$ variables? Using techniques from the deformation theory of $p$-divisible groups and finite flat group schemes, we answer this question by computing the essential dimension and $p$-dimension of congruence covers of the moduli space of principally polarized abelian varieties. We apply this result to compute the essential $p$-dimension of congruence covers of the moduli space of genus $g$ curves, as well as its hyperelliptic locus, and of certain locally symmetric varieties. These results include cases where the locally symmetric variety $M$ is proper. As far as we know, these are the first examples of nontrivial lower bounds on the essential dimension of an unramified, nonabelian covering of a proper algebraic variety.
Let $\varepsilon> 0$ be sufficiently small and let $0 < \eta < 1/522$. We show that if X is large enough in terms of $\varepsilon $, then for any squarefree integer $q \leq X^{196/261-\varepsilon }$ that is $X^{\eta }$-smooth one can obtain an asymptotic formula with power-saving error term for the number of squarefree integers in an arithmetic progression $a \pmod {q}$, with $(a,q) = 1$. In the case of squarefree, smooth moduli this improves upon previous work of Nunes, in which $196/261 = 0.75096\ldots $ was replaced by $25/36 = 0.69\overline {4}$. This also establishes a level of distribution for a positive density set of moduli that improves upon a result of Hooley. We show more generally that one can break the $X^{3/4}$-barrier for a density 1 set of $X^{\eta }$-smooth moduli q (without the squarefree condition).
Our proof appeals to the q-analogue of the van der Corput method of exponential sums, due to Heath-Brown, to reduce the task to estimating correlations of certain Kloosterman-type complete exponential sums modulo prime powers. In the prime case we obtain a power-saving bound via a cohomological treatment of these complete sums, while in the higher prime power case we establish savings of this kind using p-adic methods.
We consider a concrete family of $2$-towers $(\mathbb {Q}(x_n))_n$ of totally real algebraic numbers for which we prove that, for each $n$, $\mathbb {Z}[x_n]$ is the ring of integers of $\mathbb {Q}(x_n)$ if and only if the constant term of the minimal polynomial of $x_n$ is square-free. We apply our characterization to produce new examples of monogenic number fields, which can be of arbitrary large degree under the ABC-Conjecture.
Let A be an abelian variety defined over a number field k, let p be an odd prime number and let $F/k$ be a cyclic extension of p-power degree. Under not-too-stringent hypotheses we give an interpretation of the p-component of the relevant case of the equivariant Tamagawa number conjecture in terms of integral congruence relations involving the evaluation on appropriate points of A of the ${\rm Gal}(F/k)$-valued height pairing of Mazur and Tate. We then discuss the numerical computation of this pairing, and in particular obtain the first numerical verifications of this conjecture in situations in which the p-completion of the Mordell–Weil group of A over F is not a projective Galois module.
We prove the injectivity of Oda-type restriction maps for the cohomology of noncompact congruence quotients of symmetric spaces. This includes results for restriction between (1) congruence real hyperbolic manifolds, (2) congruence complex hyperbolic manifolds, and (3) orthogonal Shimura varieties. These results generalize results for compact congruence quotients by Bergeron and Clozel [Quelques conséquences des travaux d’Arthur pour le spectre et la topologie des variétés hyperboliques, Invent. Math.192 (2013), 505–532] and Venkataramana [Cohomology of compact locally symmetric spaces, Compos. Math.125 (2001), 221–253]. The proofs combine techniques of mixed Hodge theory and methods involving automorphic forms.
Following Ryan and Tornaría, we prove that moduli of congruences of Hecke eigenvalues, between Saito–Kurokawa lifts and non-lifts (certain Siegel modular forms of genus 2), occur (squared) in denominators of central spinor L-values (divided by twists) for the non-lifts. This is conditional on Böcherer’s conjecture and its analogues and is viewed in the context of recent work of Furusawa, Morimoto and others. It requires a congruence of Fourier coefficients, which follows from a uniqueness assumption or can be proved in examples. We explain these factors in denominators via a close examination of the Bloch–Kato conjecture.
We prove that there is a positive proportion of L-functions associated to cubic characters over $\mathbb F_q[T]$ that do not vanish at the critical point $s=1/2$. This is achieved by computing the first mollified moment using techniques previously developed by the authors in their work on the first moment of cubic L-functions, and by obtaining a sharp upper bound for the second mollified moment, building on work of Lester and Radziwiłł, which in turn develops further ideas from the work of Soundararajan, Harper and Radziwiłł. We work in the non-Kummer setting when $q\equiv 2 \,(\mathrm {mod}\,3)$, but our results could be translated into the Kummer setting when $q\equiv 1\,(\mathrm {mod}\,3)$ as well as into the number-field case (assuming the generalised Riemann hypothesis). Our positive proportion of nonvanishing is explicit, but extremely small, due to the fact that the implied constant in the upper bound for the mollified second moment is very large.
This paper is concerned with the growth rate of the product of consecutive partial quotients relative to the denominator of the convergent for the continued fraction expansion of an irrational number. More precisely, given a natural number $m,$ we determine the Hausdorff dimension of the following set:
where $\tau $ is a nonnegative number. This extends the dimensional result of Dirichlet nonimprovable sets (when $m=1$) shown by Hussain, Kleinbock, Wadleigh and Wang.
for a finite $A\subset \mathbb {R}$, following a streamlining of the arguments of Solymosi, Konyagin and Shkredov. We include several new observations to our techniques.
We give a family of real quadratic fields such that the 2-class field towers over their cyclotomic $\mathbb Z_2$-extensions have metabelian Galois groups of abelian invariants $[2,2,2]$. We also consider the boundedness of the Galois groups in relation to Greenberg’s conjecture, and calculate their class-2 quotients with an explicit example.
In this note, by introducing a new variant of the resonator function, we give an explicit version of the lower bound for $\log |L(\sigma ,\chi )|$ in the strip $1/2<\sigma <1$, which improves the result of Aistleitner et al. [‘On large values of $L(\sigma ,\chi )$’, Q. J. Math.70 (2019), 831–848].
In the field of formal power series over a finite field, we prove a result which enables us to construct explicit examples of $U_{m}$-numbers by using continued fraction expansions of algebraic formal power series of degree $m>1$.
We compare the Pontryagin duals of fine Selmer groups of two congruent p-adic Galois representations over admissible pro-p, p-adic Lie extensions $K_\infty $ of number fields K. We prove that in several natural settings the $\pi $-primary submodules of the Pontryagin duals are pseudo-isomorphic over the Iwasawa algebra; if the coranks of the fine Selmer groups are not equal, then we can still prove inequalities between the $\mu $-invariants. In the special case of a $\mathbb {Z}_p$-extension $K_\infty /K$, we also compare the Iwasawa $\lambda $-invariants of the fine Selmer groups, even in situations where the $\mu $-invariants are nonzero. Finally, we prove similar results for certain abelian non-p-extensions.
We prove some qualitative results about the p-adic Jacquet–Langlands correspondence defined by Scholze, in the $\operatorname {\mathrm {GL}}_2(\mathbb{Q}_p )$ residually reducible case, using a vanishing theorem proved by Judith Ludwig. In particular, we show that in the cases under consideration, the global p-adic Jacquet–Langlands correspondence can also deal with automorphic forms with principal series representations at p in a nontrivial way, unlike its classical counterpart.
A Cantor series expansion for a real number x with respect to a basic sequence $Q=(q_1,q_2,\dots )$, where $q_i \geq 2$, is a generalization of the base b expansion to an infinite sequence of bases. Ki and Linton in 1994 showed that for ordinary base b expansions the set of normal numbers is a $\boldsymbol {\Pi }^0_3$-complete set, establishing the exact complexity of this set. In the case of Cantor series there are three natural notions of normality: normality, ratio normality, and distribution normality. These notions are equivalent for base b expansions, but not for more general Cantor series expansions. We show that for any basic sequence the set of distribution normal numbers is $\boldsymbol {\Pi }^0_3$-complete, and if Q is $1$-divergent then the sets of normal and ratio normal numbers are $\boldsymbol {\Pi }^0_3$-complete. We further show that all five non-trivial differences of these sets are $D_2(\boldsymbol {\Pi }^0_3)$-complete if $\lim _i q_i=\infty $ and Q is $1$-divergent. This shows that except for the trivial containment that every normal number is ratio normal, these three notions are as independent as possible.
The main aim of this article is to show that normalised standard intertwining operator between induced representations of p-adic groups, at a very specific point of evaluation, has an arithmetic origin. This result has applications to Eisenstein cohomology and the special values of automorphic L-functions.