To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this article we establish the effective Shafarevich conjecture for abelian varieties over ${\mathbb Q}$ of ${\text {GL}_2}$-type. The proof combines Faltings’ method with Serre’s modularity conjecture, isogeny estimates and results from Arakelov theory. Our result opens the way for the effective study of integral points on certain higher dimensional moduli schemes such as, for example, Hilbert modular varieties.
Let \[||x||\] denote the distance from \[x \in \mathbb{R}\] to the nearest integer. In this paper, we prove a new existence and density result for matrices \[A \in {\mathbb{R}^{m \times n}}\] satisfying the inequality
where q ranges in \[{\mathbb{Z}^n}\] and Ai denote the rows of the matrix A. This result extends previous work of Moshchevitin both to arbitrary dimension and to the inhomogeneous setting. The estimates needed to apply Moshchevitin’s method to the case m > 2 are not currently available. We therefore develop a substantially different method, based on Cantor-like set constructions of Badziahin and Velani. Matrices with the above property also appear to have very small sums of reciprocals of fractional parts. This fact helps us to shed light on a question raised by Lê and Vaaler on such sums, thereby proving some new estimates in higher dimension.
We refine a previous construction by Akhtari and Bhargava so that, for every positive integer m, we obtain a positive proportion of Thue equations F(x, y) = h that fail the integral Hasse principle simultaneously for every positive integer h less than m. The binary forms F have fixed degree ≥ 3 and are ordered by the absolute value of the maximum of the coefficients.
The Zagier L-series encode data of real quadratic fields. We study the average size of these L-series, and prove asymptotic expansions and omega results for the expansion. We then show how the error term in the asymptotic expansion can be used to obtain error terms in the prime geodesic theorem.
The plus and minus norm groups are constructed by Kobayashi as subgroups of the formal group of an elliptic curve with supersingular reduction, and they play an important role in Kobayashi’s definition of the signed Selmer groups. In this paper, we study the cohomology of these plus and minus norm groups. In particular, we show that these plus and minus norm groups are cohomologically trivial. As an application of our analysis, we establish certain (quasi-)projectivity properties of the non-primitive mixed signed Selmer groups of an elliptic curve with good reduction at all primes above p. We then build on these projectivity results to derive a Kida formula for the signed Selmer groups under a slight weakening of the usual µ = 0 assumption, and study the integrality property of the characteristic element attached to the signed Selmer groups.
We investigate the distribution of the digits of quotients of randomly chosen positive integers taken from the interval $[1,T]$, improving the previously known error term for the counting function as $T\to +\infty $. We also resolve some natural variants of the problem concerning points with prime coordinates and points that are visible from the origin.
Let $p$ be a prime number. For a positive integer $n$ and a real number $\xi$, let $\lambda _n (\xi )$ denote the supremum of the real numbers $\lambda$ for which there are infinitely many integer tuples $(x_0, x_1, \ldots , x_n)$ such that $| x_0 \xi - x_1|_p, \ldots , | x_0 \xi ^{n} - x_n|_p$ are all less than $X^{-\lambda - 1}$, where $X$ is the maximum of $|x_0|, |x_1|, \ldots , |x_n|$. We establish new results on the Hausdorff dimension of the set of real numbers $\xi$ for which $\lambda _n (\xi )$ is equal to (or greater than or equal to) a given value.
For fixed $\alpha \in [0,1]$, consider the set $S_{\alpha ,N}$ of dilated squares $\alpha , 4\alpha , 9\alpha , \dots , N^2\alpha \, $ modulo $1$. Rudnick and Sarnak conjectured that, for Lebesgue, almost all such $\alpha $ the gap-distribution of $S_{\alpha ,N}$ is consistent with the Poisson model (in the limit as N tends to infinity). In this paper, we prove a new estimate for the triple correlations associated with this problem, establishing an asymptotic expression for the third moment of the number of elements of $S_{\alpha ,N}$ in a random interval of length $L/N$, provided that $L> N^{1/4+\varepsilon }$. The threshold of $\tfrac {1}{4}$ is substantially smaller than the threshold of $\tfrac {1}{2}$ (which is the threshold that would be given by a naïve discrepancy estimate).
Unlike the theory of pair correlations, rather little is known about triple correlations of the dilations $(\alpha a_n \, \text {mod } 1)_{n=1}^{\infty } $ for a nonlacunary sequence $(a_n)_{n=1}^{\infty } $ of increasing integers. This is partially due to the fact that the second moment of the triple correlation function is difficult to control, and thus standard techniques involving variance bounds are not applicable. We circumvent this impasse by using an argument inspired by works of Rudnick, Sarnak, and Zaharescu, and Heath-Brown, which connects the triple correlation function to some modular counting problems.
In Appendix B, we comment on the relationship between discrepancy and correlation functions, answering a question of Steinerberger.
We consider the reduction of an elliptic curve defined over the rational numbers modulo primes in a given arithmetic progression and investigate how often the subgroup of rational points of this reduced curve is cyclic.
Let $k\geqslant 1$ be a natural number and $\omega _k(n)$ denote the number of distinct prime factors of a natural number n with multiplicity k. We estimate the first and second moments of the functions $\omega _k$ with $k\geqslant 1$. Moreover, we prove that the function $\omega _1(n)$ has normal order $\log \log n$ and the function $(\omega _1(n)-\log \log n)/\sqrt {\log \log n}$ has a normal distribution. Finally, we prove that the functions $\omega _k(n)$ with $k\geqslant 2$ do not have normal order $F(n)$ for any nondecreasing nonnegative function F.
Using some formulas of S. Ramanujan, we compute in closed form the Fourier transform of functions related to Riemann zeta function $\zeta (s)=\sum \nolimits _{n=1}^{\infty } {1}/{n^{s}}$ and other Dirichlet series.
Let $G_1, \ldots , G_k$ be finite-dimensional vector spaces over a prime field $\mathbb {F}_p$. A multilinear variety of codimension at most $d$ is a subset of $G_1 \times \cdots \times G_k$ defined as the zero set of $d$ forms, each of which is multilinear on some subset of the coordinates. A map $\phi$ defined on a multilinear variety $B$ is multilinear if for each coordinate $c$ and all choices of $x_i \in G_i$, $i\not =c$, the restriction map $y \mapsto \phi (x_1, \ldots , x_{c-1}, y, x_{c+1}, \ldots , x_k)$ is linear where defined. In this note, we show that a multilinear map defined on a multilinear variety of codimension at most $d$ coincides on a multilinear variety of codimension $O_{k}(d^{O_{k}(1)})$ with a multilinear map defined on the whole of $G_1\times \cdots \times G_k$. Additionally, in the case of general finite fields, we deduce similar (but slightly weaker) results.
Extending a result by Alon, Linial, and Meshulam to abelian groups, we prove that if G is a finite abelian group of exponent m and S is a sequence of elements of G such that any subsequence of S consisting of at least $$|S| - m\ln |G|$$ elements generates G, then S is an additive basis of G . We also prove that the additive span of any l generating sets of G contains a coset of a subgroup of size at least $$|G{|^{1 - c{ \in ^l}}}$$ for certain c=c(m) and $$ \in=\in (m) < 1$$; we use the probabilistic method to give sharper values of c(m) and $$ \in (m)$$ in the case when G is a vector space; and we give new proofs of related known results.
In this note, we will apply the results of Gross–Zagier, Gross–Kohnen–Zagier and their generalizations to give a short proof that the differences of singular moduli are not units. As a consequence, we obtain a result on isogenies between reductions of CM elliptic curves.
Let K/k be an extension of number fields. We describe theoretical results and computational methods for calculating the obstruction to the Hasse norm principle for K/k and the defect of weak approximation for the norm one torus \[R_{K/k}^1{\mathbb{G}_m}\]. We apply our techniques to give explicit and computable formulae for the obstruction to the Hasse norm principle and the defect of weak approximation when the normal closure of K/k has symmetric or alternating Galois group.
Let $g_0$ be a smooth pinched negatively curved Riemannian metric on a complete surface N, and let $\Lambda _0$ be a basic hyperbolic set of the geodesic flow of $g_0$ with Hausdorff dimension strictly smaller than two. Given a small smooth perturbation g of $g_0$ and a smooth real-valued function f on the unit tangent bundle to N with respect to g, let $L_{g,\Lambda ,f}$ (respectively $M_{g,\Lambda ,f}$) be the Lagrange (respectively Markov) spectrum of asymptotic highest (respectively highest) values of f along the geodesics in the hyperbolic continuation $\Lambda $ of $\Lambda _0$. We prove that for generic choices of g and f, the Hausdorff dimensions of the sets $L_{g,\Lambda , f}\cap (-\infty , t)$ vary continuously with $t\in \mathbb {R}$ and, moreover, $M_{g,\Lambda , f}\cap (-\infty , t)$ has the same Hausdorff dimension as $L_{g,\Lambda , f}\cap (-\infty , t)$ for all $t\in \mathbb {R}$.
Let $\pi $ be an automorphic irreducible cuspidal representation of $\mathrm{GL}_{m}$ over $\mathbb {Q}$. Denoted by $\lambda _{\pi }(n)$ the nth coefficient in the Dirichlet series expansion of $L(s,\pi )$ associated with $\pi $. Let $\pi _{1}$ be an automorphic irreducible cuspidal representation of $\mathrm{SL}(2,\mathbb {Z})$. Denoted by $\lambda _{\pi _{1}\times \pi _{1}}(n)$ the nth coefficient in the Dirichlet series expansion of $L(s,\pi _{1}\times \pi _{1})$ associated with $\pi _{1}\times \pi _{1}$. In this paper, we study the cancellations of $\lambda _{\pi }(n)$ and $\lambda _{\pi _{1}\times \pi _{1}}(n)$ over Beatty sequences.
We discuss the origin, an improved definition and the key reciprocity property of the trilinear symbol introduced by Rédei [16] in the study of 8-ranks of narrow class groups of quadratic number fields. It can be used to show that such 8-ranks are ‘governed’ by Frobenius conditions on the primes dividing the discriminant, a fact used in the recent work of A. Smith [18, 19]. In addition, we explain its impact in the progress towards proving my conjectural density for solvability of the negative Pell equation $x^2-dy^2=-1$.
Fix positive integers k and n with $k \leq n$. Numbers $x_0, x_1, x_2, \ldots , x_{n - 1}$, each equal to $\pm {1}$, are cyclically arranged (so that $x_0$ follows $x_{n - 1}$) in that order. The problem is to find the product $P = x_0x_1 \cdots x_{n - 1}$ of all n numbers by asking the smallest number of questions of the type $Q_i$: what is $x_ix_{i + 1}x_{i + 2} \cdots x_{i+ k -1}$? (where all the subscripts are read modulo n). This paper studies the problem and some of its generalisations.
Let $t:{\mathbb F_p} \to C$ be a complex valued function on ${\mathbb F_p}$. A classical problem in analytic number theory is bounding the maximum
$$M(t): = \mathop {\max }\limits_{0 \le H < p} \left| {{1 \over {\sqrt p }}\sum\limits_{0 \le n < H} {t(n)} } \right|$$
of the absolute value of the incomplete sums $(1/\sqrt p )\sum\nolimits_{0 \le n < H} {t(n)} $. In this very general context one of the most important results is the Pólya–Vinogradov bound
where $\hat t:{\mathbb F_p} \to \mathbb C$ is the normalized Fourier transform of t. In this paper we provide a lower bound for certain incomplete Kloosterman sums, namely we prove that for any $\varepsilon > 0$ there exists a large subset of $a \in \mathbb F_p^ \times $ such that for $${\rm{k}}{1_{a,1,p}}:x \mapsto e((ax + \bar x)/p)$$ we have