To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove a conjecture of Maulik, Pandharipande and Thomas expressing the Gromov–Witten invariants of K3 surfaces for divisibility 2 curve classes in all genera in terms of weakly holomorphic quasi-modular forms of level 2. Then we establish the holomorphic anomaly equation in divisibility 2 in all genera. Our approach involves a refined boundary induction, relying on the top tautological group of the moduli space of smooth curves, together with a degeneration formula for the reduced virtual fundamental class with imprimitive curve classes. We use double ramification relations with target variety as a new tool to prove the initial condition. The relationship between the holomorphic anomaly equation for higher divisibility and the conjectural multiple cover formula of Oberdieck and Pandharipande is discussed in detail and illustrated with several examples.
A set of integers is primitive if it does not contain an element dividing another. Let f(n) denote the number of maximum-size primitive subsets of {1,…,2n}. We prove that the limit α = limn→∞f(n)1/n exists. Furthermore, we present an algorithm approximating α with (1 + ε) multiplicative error in N(ε) steps, showing in particular that α ≈ 1.318. Our algorithm can be adapted to estimate the number of all primitive sets in {1,…,n} as well.
We address another related problem of Cameron and Erdős. They showed that the number of sets containing pairwise coprime integers in {1,…n} is between ${2^{\pi (n)}} \cdot {e^{(1/2 + o(1))\sqrt n }}$ and ${2^{\pi (n)}} \cdot {e^{(2 + o(1))\sqrt n }}$. We show that neither of these bounds is tight: there are in fact ${2^{\pi (n)}} \cdot {e^{(1 + o(1))\sqrt n }}$ such sets.
The aim of this article is to provoke discussion concerning arithmetic properties of the function $p_{d}(n)$ counting partitions of a positive integer n into dth powers, where $d\geq 2$. Apart from results concerning the asymptotic behaviour of $p_{d}(n)$, little is known. In the first part of the paper, we prove certain congruences involving functions counting various types of partitions into dth powers. The second part of the paper is experimental and contains questions and conjectures concerning the arithmetic behaviour of the sequence $(p_{d}(n))_{n\in \mathbb {N}}$, based on computations of $p_{d}(n)$ for $n\leq 10^5$ for $d=2$ and $n\leq 10^{6}$ for $d=3, 4, 5$.
A key ingredient in the Taylor–Wiles proof of Fermat’s last theorem is the classical Ihara lemma, which is used to raise the modularity property between some congruent Galois representations. In their work on Sato and Tate, Clozel, Harris and Taylor proposed a generalisation of the Ihara lemma in higher dimension for some similitude groups. The main aim of this paper is to prove some new instances of this generalised Ihara lemma by considering some particular non-pseudo-Eisenstein maximal ideals of unramified Hecke algebras. As a consequence, we prove a level-raising statement.
We consider the continued fraction expansion of real numbers under the action of a nonuniform lattice in $\text {PSL}(2,{\mathbb R})$ and prove metric relations between the convergents and a natural geometric notion of good approximations.
For a polynomial $f(x)\in\mathbb{Q}[x]$ and rational numbers c, u, we put $f_c(x)\coloneqq f(x)+c$, and consider the Zsigmondy set $\calZ(f_c,u)$ associated to the sequence $\{f_c^n(u)-u\}_{n\geq 1}$, see Definition 1.1, where $f_c^n$ is the n-st iteration of fc. In this paper, we prove that if u is a rational critical point of f, then there exists an Mf > 0 such that $\mathbf M_f\geq \max_{c\in \mathbb{Q}}\{\#\calZ(f_c,u)\}$.
We investigate qualitative properties of the underlying scheme of Rapoport–Zink formal moduli spaces of p-divisible groups (resp., shtukas). We single out those cases where the dimension of this underlying scheme is zero (resp., those where the dimension is the maximal possible). The model case for the first alternative is the Lubin–Tate moduli space, and the model case for the second alternative is the Drinfeld moduli space. We exhibit a complete list in both cases.
Let $\mathbb {F}_q$ be the finite field of q elements. In this paper, we study the vanishing behavior of multizeta values over $\mathbb {F}_q[t]$ at negative integers. These values are analogs of the classical multizeta values. At negative integers, they are series of products of power sums $S_d(k)$ which are polynomials in t. By studying the t-valuation of $S_d(s)$ for $s < 0$, we show that multizeta values at negative integers vanish only at trivial zeros. The proof is inspired by the idea of Sheats in the proof of a statement of “greedy element” by Carlitz.
We show that there are biases in the number of appearances of the parts in two residue classes in the set of ordinary partitions. More precisely, let $p_{j,k,m} (n)$ be the number of partitions of n such that there are more parts congruent to j modulo m than parts congruent to k modulo m for $m \geq 2$. We prove that $p_{1,0,m} (n)$ is in general larger than $p_{0,1,m} (n)$. We also obtain asymptotic formulas for $p_{1,0,m}(n)$ and $p_{0,1,m}(n)$ for $m \geq 2$.
Z.-W. Sun [‘Refining Lagrange’s four-square theorem’, J. Number Theory175 (2017), 169–190] conjectured that every positive integer n can be written as $ x^2+y^2+z^2+w^2\ (x,y,z,w\in \mathbb {N}=\{0,1,\ldots \})$ with $x+3y$ a square and also as $n=x^2+y^2+z^2+w^2\ (x,y,z,w \in \mathbb {Z})$ with $x+3y\in \{4^k:k\in \mathbb {N}\}$. In this paper, we confirm these conjectures via the arithmetic theory of ternary quadratic forms.
We prove that sets with positive upper Banach density in sufficiently large dimensions contain congruent copies of all sufficiently large dilates of three specific higher-dimensional patterns. These patterns are: 2n vertices of a fixed n-dimensional rectangular box, the same vertices extended with n points completing three-term arithmetic progressions, and the same vertices extended with n points completing three-point corners. Our results provide common generalizations of several Euclidean density theorems from the literature.
We study the l-adic cohomology of unramified Rapoport–Zink spaces of EL-type. These spaces were used in Harris and Taylor’s proof of the local Langlands correspondence for $\mathrm {GL_n}$ and to show local–global compatibilities of the Langlands correspondence. In this paper we consider certain morphisms $\mathrm {Mant}_{b, \mu }$ of Grothendieck groups of representations constructed from the cohomology of these spaces, as studied by Harris and Taylor, Mantovan, Fargues, Shin and others. Due to earlier work of Fargues and Shin we have a description of $\mathrm {Mant}_{b, \mu }(\rho )$ for $\rho $ a supercuspidal representation. In this paper, we give a conjectural formula for $\mathrm {Mant}_{b, \mu }(\rho )$ for $\rho $ an admissible representation and prove it when $\rho $ is essentially square-integrable. Our proof works for general $\rho $ conditionally on a conjecture appearing in Shin’s work. We show that our description agrees with a conjecture of Harris in the case of parabolic inductions of supercuspidal representations of a Levi subgroup.
Andrews introduced the partition function $\overline {C}_{k, i}(n)$, called the singular overpartition function, which counts the number of overpartitions of n in which no part is divisible by k and only parts $\equiv \pm i\pmod {k}$ may be overlined. We prove that $\overline {C}_{6, 2}(n)$ is almost always divisible by $2^k$ for any positive integer k. We also prove that $\overline {C}_{6, 2}(n)$ and $\overline {C}_{12, 4}(n)$ are almost always divisible by $3^k$. Using a result of Ono and Taguchi on nilpotency of Hecke operators, we find infinite families of congruences modulo arbitrary powers of $2$ satisfied by $\overline {C}_{6, 2}(n)$.
For any prime p, let $y(p)$ denote the smallest integer y such that every reduced residue class (mod p) is represented by the product of some subset of $\{1,\dots ,y\}$. It is easy to see that $y(p)$ is at least as large as the smallest quadratic nonresidue (mod p); we prove that $y(p) \ll _\varepsilon p^{1/(4 \sqrt e)+\varepsilon }$, thus strengthening Burgess’ classical result. This result is of intermediate strength between two other results, namely Burthe’s proof that the multiplicative group (mod p) is generated by the integers up to $O_\varepsilon (p^{1/(4 \sqrt e)+\varepsilon })$, and Munsch and Shparlinski’s result that every reduced residue class (mod p) is represented by the product of some subset of the primes up to $O_\varepsilon (p^{1/(4 \sqrt e)+\varepsilon })$. Unlike the latter result, our proof is elementary and similar in structure to Burgess’ proof for the least quadratic nonresidue.
We prove a new upper bound on the second moment of Maass form symmetric square L-functions defined over Gaussian integers. Combining this estimate with the recent result of Balog–Biro–Cherubini–Laaksonen, we improve the error term in the prime geodesic theorem for the Picard manifold.
Applying circle inversion on a square grid filled with circles, we obtain a configuration that we call a fabric of kissing circles. We focus on the curvature inside the individual components of the fabric, which are two orthogonal frames and two orthogonal families of chains. We show that the curvatures of the frame circles form a doubly infinite arithmetic sequence (bi-sequence), whereas the curvatures in each chain are arranged in a quadratic bi-sequence. We also prove a sufficient condition for the fabric to be integral.
Lapid and Mao formulated a conjecture on an explicit formula of Whittaker–Fourier coefficients of automorphic forms on quasi-split reductive groups and metaplectic groups as an analogue of the Ichino–Ikeda conjecture. They also showed that this conjecture is reduced to a certain local identity in the case of unitary groups. In this article, we study the even unitary-group case. Indeed, we prove this local identity over p-adic fields. Further, we prove an equivalence between this local identity and a refined formal degree conjecture over any local field of characteristic zero. As a consequence, we prove a refined formal degree conjecture over p-adic fields and get an explicit formula of Whittaker–Fourier coefficients under certain assumptions.
Let $P_1,\dots ,P_m\in \mathbb{Z} [y]$ be polynomials with distinct degrees, each having zero constant term. We show that any subset A of $\{1,\dots ,N\}$ with no nontrivial progressions of the form $x,x+P_1(y),\dots ,x+P_m(y)$ has size $|A|\ll N/(\log \log {N})^{c_{P_1,\dots ,P_m}}$. Along the way, we prove a general result controlling weighted counts of polynomial progressions by Gowers norms.
We propose a framework to prove Malle's conjecture for the compositum of two number fields based on proven results of Malle's conjecture and good uniformity estimates. Using this method, we prove Malle's conjecture for $S_n\times A$ over any number field $k$ for $n=3$ with $A$ an abelian group of order relatively prime to 2, for $n= 4$ with $A$ an abelian group of order relatively prime to 6, and for $n=5$ with $A$ an abelian group of order relatively prime to 30. As a consequence, we prove that Malle's conjecture is true for $C_3\wr C_2$ in its $S_9$ representation, whereas its $S_6$ representation is the first counter-example of Malle's conjecture given by Klüners. We also prove new local uniformity results for ramified $S_5$ quintic extensions over arbitrary number fields by adapting Bhargava's geometric sieve and averaging over fundamental domains of the parametrization space.