To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
for triple product L-functions, where $\Psi $ is a fixed Hecke–Maass form on $\operatorname {\mathrm {SL}}_2(\mathbb {Z})$ and $\varphi $ runs over the Hecke–Maass newforms on $\Gamma _0(p)$ of bounded eigenvalue. The proof is via the theta correspondence and analysis of periods of half-integral weight modular forms. This estimate is not expected to be optimal, but the exponent $5/4$ is the strongest obtained to date for a moment problem of this shape. We show that the expected upper bound follows if one assumes the Ramanujan conjecture in both the integral and half-integral weight cases.
Under the triple product formula, our result may be understood as a strong level aspect form of quantum ergodicity: for a large prime p, all but very few Hecke–Maass newforms on $\Gamma _0(p) \backslash \mathbb {H}$ of bounded eigenvalue have very uniformly distributed mass after pushforward to $\operatorname {\mathrm {SL}}_2(\mathbb {Z}) \backslash \mathbb {H}$.
Our main result turns out to be closely related to estimates such as
where the sum is over those n for which $n p$ is a fundamental discriminant and $\chi _{n p}$ denotes the corresponding quadratic character. Such estimates improve upon bounds of Duke–Iwaniec.
Aigner showed in 1934 that nontrivial quadratic solutions to $x^4 + y^4 = 1$ exist only in $\mathbb Q(\sqrt {-7})$. Following a method of Mordell, we show that nontrivial quadratic solutions to $x^4 + 2^ny^4 = 1$ arise from integer solutions to the equations $X^4 \pm 2^nY^4 = Z^2$ investigated in 1853 by V. A. Lebesgue.
As pointed out by Alexandre Bailleul, the paper mentioned in the title contains a mistake in Theorem 2.2. The hypothesis on the linear relation of the almost periods is not sufficient. In this note, we fix the problem and its minor consequences on other results in the same paper.
Let ${\mathbf {G}}$ be a semisimple algebraic group over a number field K, $\mathcal {S}$ a finite set of places of K, $K_{\mathcal {S}}$ the direct product of the completions $K_{v}, v \in \mathcal {S}$, and ${\mathcal O}$ the ring of $\mathcal {S}$-integers of K. Let $G = {\mathbf {G}}(K_{\mathcal {S}})$, $\Gamma = {\mathbf {G}}({\mathcal O})$ and $\pi :G \rightarrow G/\Gamma $ the quotient map. We describe the closures of the locally divergent orbits ${T\pi (g)}$ where T is a maximal $K_{\mathcal {S}}$-split torus in G. If $\# S = 2$ then the closure $ \overline{T\pi (g)}$ is a finite union of T-orbits stratified in terms of parabolic subgroups of ${\mathbf {G}} \times {\mathbf {G}}$ and, consequently, $\overline{T\pi (g)}$ is homogeneous (i.e. $\overline{T\pi (g)}= H\pi (g)$ for a subgroup H of G) if and only if ${T\pi (g)}$ is closed. On the other hand, if $\# \mathcal {S}> 2$ and K is not a $\mathrm {CM}$-field then $\overline {T\pi (g)}$ is homogeneous for ${\mathbf {G}} = \mathbf {SL}_{n}$ and, generally, non-homogeneous but squeezed between closed orbits of two reductive subgroups of equal semisimple K-ranks for ${\mathbf {G}} \neq \mathbf {SL}_{n}$. As an application, we prove that $\overline {f({\mathcal O}^{n})} = K_{\mathcal {S}}$ for the class of non-rational locally K-decomposable homogeneous forms $f \in K_{\mathcal {S}}[x_1, \ldots , x_{n}]$.
Let G be a semisimple real algebraic group defined over ${\mathbb {Q}}$, $\Gamma $ be an arithmetic subgroup of G, and T be a maximal ${\mathbb {R}}$-split torus. A trajectory in $G/\Gamma $ is divergent if eventually it leaves every compact subset. In some cases there is a finite collection of explicit algebraic data which accounts for the divergence. If this is the case, the divergent trajectory is called obvious. Given a closed cone in T, we study the existence of non-obvious divergent trajectories under its action in $G\kern-1pt{/}\kern-1pt\Gamma $. We get a sufficient condition for the existence of a non-obvious divergence trajectory in the general case, and a full classification under the assumption that $\mathrm {rank}_{{\mathbb {Q}}}G=\mathrm {rank}_{{\mathbb {R}}}G=2$.
Higher-dimensional binary shifts of number-theoretic origin with positive topological entropy are considered. We are particularly interested in analysing their symmetries and extended symmetries. They form groups, known as the topological centralizer and normalizer of the shift dynamical system, which are natural topological invariants. Here, our focus is on shift spaces with trivial centralizers, but large normalizers. In particular, we discuss several systems where the normalizer is an infinite extension of the centralizer, including the visible lattice points and the k-free integers in some real quadratic number fields.
We show that the mod p cohomology of a simple Shimura variety treated in Harris-Taylor’s book vanishes outside a certain nontrivial range after localizing at any non-Eisenstein ideal of the Hecke algebra. In cases of low dimensions, we show the vanishing outside the middle degree under a mild additional assumption.
Let $E/\mathbb {Q}$ be a number field of degree $n$. We show that if $\operatorname {Reg}(E)\ll _n |\!\operatorname{Disc}(E)|^{1/4}$ then the fraction of class group characters for which the Hecke $L$-function does not vanish at the central point is $\gg _{n,\varepsilon } |\!\operatorname{Disc}(E)|^{-1/4-\varepsilon }$. The proof is an interplay between almost equidistribution of Eisenstein periods over the toral packet in $\mathbf {PGL}_n(\mathbb {Z})\backslash \mathbf {PGL}_n(\mathbb {R})$ associated to the maximal order of $E$, and the escape of mass of the torus orbit associated to the trivial ideal class.
In this paper we prove the mixed Ax–Schanuel theorem for the universal abelian varieties (more generally any mixed Shimura variety of Kuga type), and give some simple applications. In particular, we present an application for studying the generic rank of the Betti map.
We revisit the paper [Automorphy lifting for residually reducible$l$-adic Galois representations, J. Amer. Math. Soc. 28 (2015), 785–870] by the third author. We prove new automorphy lifting theorems for residually reducible Galois representations of unitary type in which the residual representation is permitted to have an arbitrary number of irreducible constituents.
We improve upon the local bound in the depth aspect for sup-norms of newforms on $D^\times$, where $D$ is an indefinite quaternion division algebra over ${\mathbb {Q}}$. Our sup-norm bound implies a depth-aspect subconvexity bound for $L(1/2, f \times \theta _\chi )$, where $f$ is a (varying) newform on $D^\times$ of level $p^n$, and $\theta _\chi$ is an (essentially fixed) automorphic form on $\textrm {GL}_2$ obtained as the theta lift of a Hecke character $\chi$ on a quadratic field. For the proof, we augment the amplification method with a novel filtration argument and a recent counting result proved by the second-named author to reduce to showing strong quantitative decay of matrix coefficients of local newvectors along compact subsets, which we establish via $p$-adic stationary phase analysis. Furthermore, we prove a general upper bound in the level aspect for sup-norms of automorphic forms belonging to any family whose associated matrix coefficients have such a decay property.
This paper generalizes the Gan–Gross–Prasad (GGP) conjectures that were earlier formulated for tempered or more generally generic L-packets to Arthur packets, especially for the non-generic L-packets arising from Arthur parameters. The paper introduces the key notion of a relevant pair of Arthur parameters that governs the branching laws for ${{\rm GL}}_n$ and all classical groups over both local fields and global fields. It plays a role for all the branching problems studied in Gan et al. [Symplectic local root numbers, central critical L-values and restriction problems in the representation theory of classical groups. Sur les conjectures de Gross et Prasad. I, Astérisque 346 (2012), 1–109] including Bessel models and Fourier–Jacobi models.
In this paper, we prove a one level density result for the low-lying zeros of quadratic Hecke L-functions of imaginary quadratic number fields of class number 1. As a corollary, we deduce, essentially, that at least $(19-\cot (1/4))/16 = 94.27\ldots \%$ of the L-functions under consideration do not vanish at 1/2.
Let A be a two-dimensional abelian variety defined over a number field K. Fix a prime number $\ell $ and suppose $\#A({\mathbf {F}_{\mathfrak {p}}}) \equiv 0 \pmod {\ell ^2}$ for a set of primes ${\mathfrak {p}} \subset {\mathcal {O}_{K}}$ of density 1. When $\ell =2$ Serre has shown that there does not necessarily exist a K-isogenous $A'$ such that $\#A'(K)_{{tor}} \equiv 0 \pmod {4}$. We extend those results to all odd $\ell $ and classify the abelian varieties that fail this divisibility principle for torsion in terms of the image of the mod-$\ell ^2$ representation.
We give a formula for the class number of an arbitrary complex mutliplication (CM) algebraic torus over $\mathbb {Q}$. This is proved based on results of Ono and Shyr. As applications, we give formulas for numbers of polarized CM abelian varieties, of connected components of unitary Shimura varieties and of certain polarized abelian varieties over finite fields. We also give a second proof of our main result.
We consider autocorrelation functions for supersymmetric quantum mechanical systems (consisting of a fermion and a boson) confined in trigonometric Pöschl–Teller partner potentials. We study the limit of rescaled autocorrelation functions (at random time) as the localization of the initial state goes to infinity. The limiting distribution can be described using pairs of Jacobi theta functions on a suitably defined homogeneous space, as a corollary of the work of Cellarosi and Marklof. A construction by Contreras-Astorga and Fernández provides large classes of Pöschl-Teller partner potentials to which our analysis applies.
We examine a recursive sequence in which $s_n$ is a literal description of what the binary expansion of the previous term $s_{n-1}$ is not. By adapting a technique of Conway, we determine the limiting behaviour of $\{s_n\}$ and dynamics of a related self-map of $2^{\mathbb {N}}$. Our main result is the existence and uniqueness of a pair of binary sequences, each the complement-description of the other. We also take every opportunity to make puns.
Jeśmanowicz conjectured that $(x,y,z)=(2,2,2)$ is the only positive integer solution of the equation $(*)\; ((\kern1.5pt f^2-g^2)n)^x+(2fgn)^y=((\kern1.5pt f^2+g^2)n)^x$, where n is a positive integer and f, g are positive integers such that $f>g$, $\gcd (\kern1.5pt f,g)=1$ and $f \not \equiv g\pmod 2$. Using Baker’s method, we prove that: (i) if $n>1$, $f \ge 98$ and $g=1$, then $(*)$ has no positive integer solutions $(x,y,z)$ with $x>z>y$; and (ii) if $n>1$, $f=2^rs^2$ and $g=1$, where r, s are positive integers satisfying$(**)\; 2 \nmid s$ and $s<2^{r/2}$, then $(*)$ has no positive integer solutions $(x,y,z)$ with $y>z>x$. Thus, Jeśmanowicz’ conjecture is true if $f=2^rs^2$ and $g=1$, where r, s are positive integers satisfying $(**)$.
Let $a_1$, $a_2$, and $a_3$ be distinct reduced residues modulo q satisfying the congruences $a_1^2 \equiv a_2^2 \equiv a_3^2 \ (\mathrm{mod}\ q)$. We conditionally derive an asymptotic formula, with an error term that has a power savings in q, for the logarithmic density of the set of real numbers x for which $\pi (x;q,a_1)> \pi (x;q,a_2) > \pi (x;q,a_3)$. The relationship among the $a_i$ allows us to normalize the error terms for the $\pi (x;q,a_i)$ in an atypical way that creates mutual independence among their distributions, and also allows for a proof technique that uses only elementary tools from probability.