To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $n$ be either $2$ or an odd integer greater than $1$, and fix a prime $p>2(n+1)$. Under standard ‘adequate image’ assumptions, we show that the set of components of $n$-dimensional $p$-adic potentially semistable local Galois deformation rings that are seen by potentially automorphic compatible systems of polarizable Galois representations over some CM field is independent of the particular global situation. We also (under the same assumption on $n$) improve on the main potential automorphy result of Barnet-Lamb et al. [Potential automorphy and change of weight, Ann. of Math. (2)179(2) (2014), 501–609], replacing ‘potentially diagonalizable’ by ‘potentially globally realizable’.
We define variants of PEL type of the Shimura varieties that appear in the context of the arithmetic Gan–Gross–Prasad (AGGP) conjecture. We formulate for them a version of the AGGP conjecture. We also construct (global and semi-global) integral models of these Shimura varieties and formulate for them conjectures on arithmetic intersection numbers. We prove some of these conjectures in low dimension.
Suppose that $G$ is a simple reductive group over $\mathbf{Q}$, with an exceptional Dynkin type and with $G(\mathbf{R})$ quaternionic (in the sense of Gross–Wallach). In a previous paper, we gave an explicit form of the Fourier expansion of modular forms on $G$ along the unipotent radical of the Heisenberg parabolic. In this paper, we give the Fourier expansion of the minimal modular form $\unicode[STIX]{x1D703}_{Gan}$ on quaternionic $E_{8}$ and some applications. The $Sym^{8}(V_{2})$-valued automorphic function $\unicode[STIX]{x1D703}_{Gan}$ is a weight 4, level one modular form on $E_{8}$, which has been studied by Gan. The applications we give are the construction of special modular forms on quaternionic $E_{7},E_{6}$ and $G_{2}$. We also discuss a family of degenerate Heisenberg Eisenstein series on the groups $G$, which may be thought of as an analogue to the quaternionic exceptional groups of the holomorphic Siegel Eisenstein series on the groups $\operatorname{GSp}_{2n}$.
We consider frieze sequences corresponding to sequences of cluster mutations for affine D- and E-type quivers. We show that the cluster variables satisfy linear recurrences with periodic coefficients, which imply the constant coefficient relations found by Keller and Scherotzke. Viewing the frieze sequence as a discrete dynamical system, we reduce it to a symplectic map on a lower dimensional space and prove Liouville integrability of the latter.
In an earlier paper of Wee Teck Gan and Gordan Savin, the local Langlands correspondence for metaplectic groups over a nonarchimedean local field of characteristic zero was established. In this paper, we formulate and prove a local intertwining relation for metaplectic groups assuming the local intertwining relation for non-quasi-split odd special orthogonal groups.
We prove that, for any small $\varepsilon > 0$, the number of irrationals among the following odd zeta values: $\zeta (3),\zeta (5),\zeta (7),\ldots ,\zeta (s)$ is at least $( c_0 - \varepsilon )({s^{1/2}}/{(\log s)^{1/2}})$, provided $s$ is a sufficiently large odd integer with respect to $\varepsilon$. The constant $c_0 = 1.192507\ldots$ can be expressed in closed form. Our work improves the lower bound $2^{(1-\varepsilon )({\log s}/{\log \log s})}$ of the previous work of Fischler, Sprang and Zudilin. We follow the same strategy of Fischler, Sprang and Zudilin. The main new ingredient is an asymptotically optimal design for the zeros of the auxiliary rational functions, which relates to the inverse totient problem.
For positive integers n and d > 0, let $G(\mathbb {Q}^n,\; d)$ denote the graph whose vertices are the set of rational points $\mathbb {Q}^n$, with $u,v \in \mathbb {Q}^n$ being adjacent if and only if the Euclidean distance between u and v is equal to d. Such a graph is deemed “non-trivial” if d is actually realized as a distance between points of $\mathbb {Q}^n$. In this paper, we show that a space $\mathbb {Q}^n$ has the property that all pairs of non-trivial distance graphs $G(\mathbb {Q}^n,\; d_1)$ and $G(\mathbb {Q}^n,\; d_2)$ are isomorphic if and only if n is equal to 1, 2, or a multiple of 4. Along the way, we make a number of observations concerning the clique number of $G(\mathbb {Q}^n,\; d)$.
Let A be the product of an abelian variety and a torus over a number field K, and let $$m \ge 2$$ be a square-free integer. If $\alpha \in A(K)$ is a point of infinite order, we consider the set of primes $\mathfrak p$ of K such that the reduction $(\alpha \bmod \mathfrak p)$ is well defined and has order coprime to m. This set admits a natural density, which we are able to express as a finite sum of products of $\ell$ -adic integrals, where $\ell$ varies in the set of prime divisors of m. We deduce that the density is a rational number, whose denominator is bounded (up to powers of m) in a very strong sense. This extends the results of the paper Reductions of points on algebraic groups by Davide Lombardo and the second author, where the case m prime is established.
Let S be a finite set of primes. We prove that a form of finite Galois descent obstruction is the only obstruction to the existence of $\mathbb {Z}_{S}$-points on integral models of Hilbert modular varieties, extending a result of D. Helm and F. Voloch about modular curves. Let L be a totally real field. Under (a special case of) the absolute Hodge conjecture and a weak Serre’s conjecture for mod $\ell $ representations of the absolute Galois group of L, we prove that the same holds also for the $\mathcal {O}_{L,S}$-points.
We prove a functional equation for a vector valued real analytic Eisenstein series transforming with the Weil representation of $\operatorname{Sp}(n,\mathbb{Z})$ on $\mathbb{C}[(L^{\prime }/L)^{n}]$. By relating such an Eisenstein series with a real analytic Jacobi Eisenstein series of degree $n$, a functional equation for such an Eisenstein series is proved. Employing a doubling method for Jacobi forms of higher degree established by Arakawa, we transfer the aforementioned functional equation to a zeta function defined by the eigenvalues of a Jacobi eigenform. Finally, we obtain the analytic continuation and a functional equation of the standard $L$-function attached to a Jacobi eigenform, which was already proved by Murase, however in a different way.
Let f and g be two cuspidal modular forms and let ${\mathcal {F}}$ be a Coleman family passing through f, defined over an open affinoid subdomain V of weight space $\mathcal {W}$. Using ideas of Pottharst, under certain hypotheses on f and $g,$ we construct a coherent sheaf over $V \times \mathcal {W}$ that interpolates the Bloch–Kato Selmer group of the Rankin–Selberg convolution of two modular forms in the critical range (i.e, the range where the p-adic L-function $L_p$ interpolates critical values of the global L-function). We show that the support of this sheaf is contained in the vanishing locus of $L_p$.
We study intersections of orbits in polynomial semigroup dynamics with lines on the affine plane over a number field, extending previous work of D. Ghioca, T. Tucker, and M. Zieve (2008).
By making use of the ‘creative microscoping’ method, Guo and Zudilin [‘Dwork-type supercongruences through a creative $q$-microscope’, Preprint, 2020, arXiv:2001.02311] proved several Dwork-type supercongruences, including some conjectures of Swisher. In this paper, we apply the Guo–Zudilin method to prove a new Dwork-type supercongruence, which uniformly generalises several conjectures of Swisher.
In order to study integers with few prime factors, the average of $\unicode[STIX]{x1D6EC}_{k}=\unicode[STIX]{x1D707}\ast \log ^{k}$ has been a central object of research. One of the more important cases, $k=2$, was considered by Selberg [‘An elementary proof of the prime-number theorem’, Ann. of Math. (2)50 (1949), 305–313]. For $k\geq 2$, it was studied by Bombieri [‘The asymptotic sieve’, Rend. Accad. Naz. XL (5)1(2) (1975/76), 243–269; (1977)] and later by Friedlander and Iwaniec [‘On Bombieri’s asymptotic sieve’, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4)5(4) (1978), 719–756], as an application of the asymptotic sieve.
Let $\unicode[STIX]{x1D6EC}_{j,k}:=\unicode[STIX]{x1D707}_{j}\ast \log ^{k}$, where $\unicode[STIX]{x1D707}_{j}$ denotes the Liouville function for $(j+1)$-free integers, and $0$ otherwise. In this paper we evaluate the average value of $\unicode[STIX]{x1D6EC}_{j,k}$ in a residue class $n\equiv a\text{ mod }q$, $(a,q)=1$, uniformly on $q$. When $j\geq 2$, we find that the average value in a residue class differs by a constant factor from the expected value. Moreover, an explicit formula of Weil type for $\unicode[STIX]{x1D6EC}_{k}(n)$ involving the zeros of the Riemann zeta function is derived for an arbitrary compactly supported ${\mathcal{C}}^{2}$ function.
The aim of this paper is to study circular units in the compositum K of t cyclic extensions of ${\mathbb {Q}}$ ($t\ge 2$) of the same odd prime degree $\ell $. If these fields are pairwise arithmetically orthogonal and the number s of primes ramifying in $K/{\mathbb {Q}}$ is larger than $t,$ then a nontrivial root $\varepsilon $ of the top generator $\eta $ of the group of circular units of K is constructed. This explicit unit $\varepsilon $ is used to define an enlarged group of circular units of K, to show that $\ell ^{(s-t)\ell ^{t-1}}$ divides the class number of K, and to prove an annihilation statement for the ideal class group of K.
We formulate a general question regarding the size of the iterated Galois groups associated with an algebraic dynamical system and then we discuss some special cases of our question. Our main result answers this question for certain split polynomial maps whose coordinates are unicritical polynomials.
where $\chi $ is a primitive Dirichlet character and F belongs to a class of L-functions. The class we consider includes L-functions associated with automorphic representations of $GL(n)$ over ${\mathbb {Q}}$.
We prove a 1966 conjecture of Tate concerning the Artin–Tate pairing on the Brauer group of a surface over a finite field, which is the analog of the Cassels–Tate pairing. Tate asked if this pairing is always alternating and we find an affirmative answer, which is somewhat surprising in view of the work of Poonen–Stoll on the Cassels–Tate pairing. Our method is based on studying a connection between the Artin–Tate pairing and (generalizations of) Steenrod operations in étale cohomology. Inspired by an analogy to the algebraic topology of manifolds, we develop tools allowing us to calculate the relevant étale Steenrod operations in terms of characteristic classes.
We prove the test function conjecture of Kottwitz and the first named author for local models of Shimura varieties with parahoric level structure attached to Weil-restricted groups, as defined by B. Levin. Our result covers the (modified) local models attached to all connected reductive groups over $p$-adic local fields with $p\geqslant 5$. In addition, we give a self-contained study of relative affine Grassmannians and loop groups formed using general relative effective Cartier divisors in a relative curve over an arbitrary Noetherian affine scheme.
The bounded height conjecture of Bombieri, Masser, and Zannier states that for any sufficiently generic algebraic subvariety of a semiabelian $\overline{\mathbb{Q}}$-variety $G$ there is an upper bound on the Weil height of the points contained in its intersection with the union of all algebraic subgroups having (at most) complementary dimension in $G$. This conjecture has been shown by Habegger in the case where $G$ is either a multiplicative torus or an abelian variety. However, there are new obstructions to his approach if $G$ is a general semiabelian variety. In particular, the lack of Poincaré reducibility means that quotients of a given semiabelian variety are intricate to describe. To overcome this, we study directly certain families of line bundles on $G$. This allows us to demonstrate the conjecture for general semiabelian varieties.