To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the l-adic cohomology of unramified Rapoport–Zink spaces of EL-type. These spaces were used in Harris and Taylor’s proof of the local Langlands correspondence for $\mathrm {GL_n}$ and to show local–global compatibilities of the Langlands correspondence. In this paper we consider certain morphisms $\mathrm {Mant}_{b, \mu }$ of Grothendieck groups of representations constructed from the cohomology of these spaces, as studied by Harris and Taylor, Mantovan, Fargues, Shin and others. Due to earlier work of Fargues and Shin we have a description of $\mathrm {Mant}_{b, \mu }(\rho )$ for $\rho $ a supercuspidal representation. In this paper, we give a conjectural formula for $\mathrm {Mant}_{b, \mu }(\rho )$ for $\rho $ an admissible representation and prove it when $\rho $ is essentially square-integrable. Our proof works for general $\rho $ conditionally on a conjecture appearing in Shin’s work. We show that our description agrees with a conjecture of Harris in the case of parabolic inductions of supercuspidal representations of a Levi subgroup.
Andrews introduced the partition function $\overline {C}_{k, i}(n)$, called the singular overpartition function, which counts the number of overpartitions of n in which no part is divisible by k and only parts $\equiv \pm i\pmod {k}$ may be overlined. We prove that $\overline {C}_{6, 2}(n)$ is almost always divisible by $2^k$ for any positive integer k. We also prove that $\overline {C}_{6, 2}(n)$ and $\overline {C}_{12, 4}(n)$ are almost always divisible by $3^k$. Using a result of Ono and Taguchi on nilpotency of Hecke operators, we find infinite families of congruences modulo arbitrary powers of $2$ satisfied by $\overline {C}_{6, 2}(n)$.
For any prime p, let $y(p)$ denote the smallest integer y such that every reduced residue class (mod p) is represented by the product of some subset of $\{1,\dots ,y\}$. It is easy to see that $y(p)$ is at least as large as the smallest quadratic nonresidue (mod p); we prove that $y(p) \ll _\varepsilon p^{1/(4 \sqrt e)+\varepsilon }$, thus strengthening Burgess’ classical result. This result is of intermediate strength between two other results, namely Burthe’s proof that the multiplicative group (mod p) is generated by the integers up to $O_\varepsilon (p^{1/(4 \sqrt e)+\varepsilon })$, and Munsch and Shparlinski’s result that every reduced residue class (mod p) is represented by the product of some subset of the primes up to $O_\varepsilon (p^{1/(4 \sqrt e)+\varepsilon })$. Unlike the latter result, our proof is elementary and similar in structure to Burgess’ proof for the least quadratic nonresidue.
We prove a new upper bound on the second moment of Maass form symmetric square L-functions defined over Gaussian integers. Combining this estimate with the recent result of Balog–Biro–Cherubini–Laaksonen, we improve the error term in the prime geodesic theorem for the Picard manifold.
Applying circle inversion on a square grid filled with circles, we obtain a configuration that we call a fabric of kissing circles. We focus on the curvature inside the individual components of the fabric, which are two orthogonal frames and two orthogonal families of chains. We show that the curvatures of the frame circles form a doubly infinite arithmetic sequence (bi-sequence), whereas the curvatures in each chain are arranged in a quadratic bi-sequence. We also prove a sufficient condition for the fabric to be integral.
Lapid and Mao formulated a conjecture on an explicit formula of Whittaker–Fourier coefficients of automorphic forms on quasi-split reductive groups and metaplectic groups as an analogue of the Ichino–Ikeda conjecture. They also showed that this conjecture is reduced to a certain local identity in the case of unitary groups. In this article, we study the even unitary-group case. Indeed, we prove this local identity over p-adic fields. Further, we prove an equivalence between this local identity and a refined formal degree conjecture over any local field of characteristic zero. As a consequence, we prove a refined formal degree conjecture over p-adic fields and get an explicit formula of Whittaker–Fourier coefficients under certain assumptions.
Let $P_1,\dots ,P_m\in \mathbb{Z} [y]$ be polynomials with distinct degrees, each having zero constant term. We show that any subset A of $\{1,\dots ,N\}$ with no nontrivial progressions of the form $x,x+P_1(y),\dots ,x+P_m(y)$ has size $|A|\ll N/(\log \log {N})^{c_{P_1,\dots ,P_m}}$. Along the way, we prove a general result controlling weighted counts of polynomial progressions by Gowers norms.
We propose a framework to prove Malle's conjecture for the compositum of two number fields based on proven results of Malle's conjecture and good uniformity estimates. Using this method, we prove Malle's conjecture for $S_n\times A$ over any number field $k$ for $n=3$ with $A$ an abelian group of order relatively prime to 2, for $n= 4$ with $A$ an abelian group of order relatively prime to 6, and for $n=5$ with $A$ an abelian group of order relatively prime to 30. As a consequence, we prove that Malle's conjecture is true for $C_3\wr C_2$ in its $S_9$ representation, whereas its $S_6$ representation is the first counter-example of Malle's conjecture given by Klüners. We also prove new local uniformity results for ramified $S_5$ quintic extensions over arbitrary number fields by adapting Bhargava's geometric sieve and averaging over fundamental domains of the parametrization space.
Given a closed geodesic on a compact arithmetic hyperbolic surface, we show the existence of a sequence of Laplacian eigenfunctions whose integrals along the geodesic exhibit nontrivial growth. Via Waldspurger’s formula we deduce a lower bound for central values of Rankin-Selberg L-functions of Maass forms times theta series associated to real quadratic fields.
We show that for $100\%$ of the odd, square free integers $n> 0$, the $4$-rank of $\text {Cl}(\mathbb{Q} (i, \sqrt {n}))$ is equal to $\omega _3(n) - 1$, where $\omega _3$ is the number of prime divisors of n that are $3$ modulo $4$.
Let n be a positive integer and let $\mathbb{F} _{q^n}$ be the finite field with $q^n$ elements, where q is a prime power. We introduce a natural action of the projective semilinear group${\mathrm{P}\Gamma\mathrm{L}} (2, q^n)={\mathrm{PGL}} (2, q^n)\rtimes {\mathrm{Gal}} ({\mathbb F_{q^n}} /\mathbb{F} _q)$ on the set of monic irreducible polynomials over the finite field $\mathbb{F} _{q^n}$. Our main results provide information on the characterisation and number of fixed points.
In [5], Chen and Yui conjectured that Gross–Zagier type formulas may also exist for Thompson series. In this work, we verify Chen and Yui’s conjecture for the cases for Thompson series $j_{p}(\tau )$ for $\Gamma _{0}(p)$ for p prime, and equivalently establish formulas for the prime decomposition of the resultants of two ring class polynomials associated to $j_{p}(\tau )$ and imaginary quadratic fields and the prime decomposition of the discriminant of a ring class polynomial associated to $j_{p}(\tau )$ and an imaginary quadratic field. Our method for tackling Chen and Yui’s conjecture on resultants can be used to give a different proof to a recent result of Yang and Yin. In addition, as an implication, we verify a conjecture recently raised by Yang, Yin, and Yu.
Let d ≥ 3 be a natural number. We show that for all finite, non-empty sets $A \subseteq \mathbb{R}^d$ that are not contained in a translate of a hyperplane, we have
where δ > 0 is an absolute constant only depending on d. This improves upon an earlier result of Freiman, Heppes and Uhrin, and makes progress towards a conjecture of Stanchescu.
We investigate the sum of the parts in all the partitions of n into distinct parts and give two infinite families of linear inequalities involving this sum. The results can be seen as new connections between partitions and divisors.
holds for infinitely many $n\in \mathbb {N}$, where h and $\tau $ are positive continuous functions, T is the Gauss map and $a_{n}(x)$ denotes the nth partial quotient of x in its continued fraction expansion. By appropriate choices of $r,\tau (x)$ and $h(x)$ we obtain various classical results including the famous Jarník–Besicovitch theorem.
We prove the logarithmic Sarnak conjecture for sequences of subquadratic word growth. In particular, we show that the Liouville function has at least quadratically many sign patterns. We deduce the main theorem from a variant which bounds the correlations between multiplicative functions and sequences with subquadratically many words which occur with positive logarithmic density. This allows us to actually prove that our multiplicative functions do not locally correlate with sequences of subquadratic word growth. We also prove a conditional result which shows that if the ($\kappa -1$)-Fourier uniformity conjecture holds then the Liouville function does not correlate with sequences with $O(n^{t-\varepsilon })$ many words of length n where $t = \kappa (\kappa +1)/2$. We prove a variant of the $1$-Fourier uniformity conjecture where the frequencies are restricted to any set of box dimension less than $1$.
In this paper, we obtain a variation of the Pólya–Vinogradov inequality with the sum restricted to a certain height. Assume $\chi $ to be a primitive character modulo q, $ \epsilon>0$ and $N\le q^{1-\gamma }$, with $0\le \gamma \le 1/3$. We prove that
Let $\mathcal {A} \rightarrow S$ be an abelian scheme over an irreducible variety over $\mathbb {C}$ of relative dimension $g$. For any simply-connected subset $\Delta$ of $S^{\mathrm {an}}$ one can define the Betti map from $\mathcal {A}_{\Delta }$ to $\mathbb {T}^{2g}$, the real torus of dimension $2g$, by identifying each closed fiber of $\mathcal {A}_{\Delta } \rightarrow \Delta$ with $\mathbb {T}^{2g}$ via the Betti homology. Computing the generic rank of the Betti map restricted to a subvariety $X$ of $\mathcal {A}$ is useful to study Diophantine problems, e.g. proving the geometric Bogomolov conjecture over char $0$ and studying the relative Manin–Mumford conjecture. In this paper we give a geometric criterion to detect this rank. As an application we show that it is maximal after taking a large fibered power (if $X$ satisfies some conditions); it is an important step to prove the bound for the number of rational points on curves (Dimitrov et al., Uniformity in Mordell–Lang for Curves, Preprint (2020), arXiv:2001.10276). Another application is to answer a question of André, Corvaja and Zannier and improve a result of Voisin. We also systematically study its link with the relative Manin–Mumford conjecture, reducing the latter to a simpler conjecture. Our tools are functional transcendence and unlikely intersections for mixed Shimura varieties.
The level of distribution of a complex-valued sequence $b$ measures the quality of distribution of $b$ along sparse arithmetic progressions $nd+a$. We prove that the Thue–Morse sequence has level of distribution $1$, which is essentially best possible. More precisely, this sequence gives one of the first nontrivial examples of a sequence satisfying a Bombieri–Vinogradov-type theorem for each exponent $\theta <1$. This result improves on the level of distribution $2/3$ obtained by Müllner and the author. As an application of our method, we show that the subsequence of the Thue–Morse sequence indexed by $\lfloor n^c\rfloor$, where $1 < c < 2$, is simply normal. This result improves on the range $1 < c < 3/2$ obtained by Müllner and the author and closes the gap that appeared when Mauduit and Rivat proved (in particular) that the Thue–Morse sequence along the squares is simply normal.
In this article we establish the arithmetic purity of strong approximation for certain semisimple simply connected linear algebraic groups and their homogeneous spaces over a number field $k$. For instance, for any such group $G$ and for any open subset $U$ of $G$ with ${\mathrm {codim}}(G\setminus U, G)\geqslant 2$, we prove that (i) if $G$ is $k$-simple and $k$-isotropic, then $U$ satisfies strong approximation off any finite number of places; and (ii) if $G$ is the spin group of a non-degenerate quadratic form which is not compact over archimedean places, then $U$ satisfies strong approximation off all archimedean places. As a consequence, we prove that the same property holds for affine quadratic hypersurfaces. Our approach combines a fibration method with subgroup actions developed for induction on the codimension of $G\setminus U$, and an affine linear sieve which allows us to produce integral points with almost-prime polynomial values.