To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $a_1$, $a_2$, and $a_3$ be distinct reduced residues modulo q satisfying the congruences $a_1^2 \equiv a_2^2 \equiv a_3^2 \ (\mathrm{mod}\ q)$. We conditionally derive an asymptotic formula, with an error term that has a power savings in q, for the logarithmic density of the set of real numbers x for which $\pi (x;q,a_1)> \pi (x;q,a_2) > \pi (x;q,a_3)$. The relationship among the $a_i$ allows us to normalize the error terms for the $\pi (x;q,a_i)$ in an atypical way that creates mutual independence among their distributions, and also allows for a proof technique that uses only elementary tools from probability.
Let r be an integer with 2 ≤ r ≤ 24 and let pr(n) be defined by $\sum _{n=0}^\infty p_r(n) q^n = \prod _{k=1}^\infty (1-q^k)^r$. In this paper, we provide uniform methods for discovering infinite families of congruences and strange congruences for pr(n) by using some identities on pr(n) due to Newman. As applications, we establish many infinite families of congruences and strange congruences for certain partition functions, such as Andrews's smallest parts function, the coefficients of Ramanujan's ϕ function and p-regular partition functions. For example, we prove that for n ≥ 0,
For a compact abelian group G, a corner in G × G is a triple of points (x, y), (x, y+d), (x+d, y). The classical corners theorem of Ajtai and Szemerédi implies that for every α > 0, there is some δ > 0 such that every subset A ⊂ G × G of density α contains a δ fraction of all corners in G × G, as x, y, d range over G.
Recently, Mandache proved a “popular differences” version of this result in the finite field case $G = {\mathbb{F}}_p^n$, showing that for any subset A ⊂ G × G of density α, one can fix d ≠ 0 such that A contains a large fraction, now known to be approximately α4, of all corners with difference d, as x, y vary over G. We generalise Mandache’s result to all compact abelian groups G, as well as the case of corners in $\mathbb{Z}^2$.
We obtain estimates on the uniform convergence rate of the Birkhoff average of a continuous observable over torus translations and affine skew product toral transformations. The convergence rate depends explicitly on the modulus of continuity of the observable and on the arithmetic properties of the frequency defining the transformation. Furthermore, we show that for the one-dimensional torus translation, these estimates are nearly optimal.
We find and prove a class of congruences modulo 4 for eta-products associated with certain ternary quadratic forms. This study was inspired by similar conjectured congruences modulo 4 for certain mock theta functions.
We provide a direct proof of a Bogomolov-type statement for affine varieties V defined over function fields K of finite transcendence degree over an arbitrary field k, generalising a previous result (obtained through a different approach) of the first author in the special case when K is a function field of transcendence degree $1$. Furthermore, we obtain sharp lower bounds for the Weil height of the points in $V(\overline {K})$, which are not contained in the largest subvariety $W\subseteq V$ defined over the constant field $\overline {k}$.
A (positive definite and integral) quadratic form is said to be prime-universal if it represents all primes. Recently, Doyle and Williams [‘Prime-universal quadratic forms $ax^2+by^2+cz^2$ and $ax^2+by^2+cz^2+dw^2$’, Bull. Aust. Math. Soc.101 (2020), 1–12] classified all prime-universal diagonal ternary quadratic forms and all prime-universal diagonal quaternary quadratic forms under two conjectures. We classify all prime-universal diagonal quadratic forms regardless of rank, and prove the so-called 67-theorem for a diagonal quadratic form to be prime-universal.
We study lower bounds of a general family of L-functions on the $1$-line. More precisely, we show that for any $F(s)$ in this family, there exist arbitrarily large t such that $F(1+it)\geq e^{\gamma _F} (\log _2 t + \log _3 t)^m + O(1)$, where m is the order of the pole of $F(s)$ at $s=1$. This is a generalisation of the result of Aistleitner, Munsch and Mahatab [‘Extreme values of the Riemann zeta function on the $1$-line’, Int. Math. Res. Not. IMRN2019(22) (2019), 6924–6932]. As a consequence, we get lower bounds for large values of Dedekind zeta-functions and Rankin-Selberg L-functions of the type $L(s,f\times f)$ on the $1$-line.
Yoshikawa in [Invent. Math. 156 (2004), 53–117] introduces a holomorphic torsion invariant of $K3$ surfaces with involution. In this paper we completely determine its structure as an automorphic function on the moduli space of such $K3$ surfaces. On every component of the moduli space, it is expressed as the product of an explicit Borcherds lift and a classical Siegel modular form. We also introduce its twisted version. We prove its modularity and a certain uniqueness of the modular form corresponding to the twisted holomorphic torsion invariant. This is used to study an equivariant analogue of Borcherds’ conjecture.
Étant donné un groupe réductif $G$ sur une extension de degré fini de $\mathbb {Q}_p$ on classifie les $G$-fibrés sur la courbe introduite dans Fargues and Fontaine [Courbes et fibrés vectoriels en théorie de Hodge$p$-adique, Astérisque 406 (2018)]. Le résultat est interprété en termes de l'ensemble $B(G)$ de Kottwitz. On calcule également la cohomologie étale de la courbe à coefficients de torsion en lien avec la théorie du corps de classe local.
It has been well established that congruences between automorphic forms have far-reaching applications in arithmetic. In this paper, we construct congruences for Siegel–Hilbert modular forms defined over a totally real field of class number 1. As an application of this general congruence, we produce congruences between paramodular Saito–Kurokawa lifts and non-lifted Siegel modular forms. These congruences are used to produce evidence for the Bloch–Kato conjecture for elliptic newforms of square-free level and odd functional equation.
Let $\mathcal {N}(b)$ be the set of real numbers that are normal to base b. A well-known result of Ki and Linton [19] is that $\mathcal {N}(b)$ is $\boldsymbol {\Pi }^0_3$-complete. We show that the set ${\mathcal {N}}^\perp (b)$ of reals, which preserve $\mathcal {N}(b)$ under addition, is also $\boldsymbol {\Pi }^0_3$-complete. We use the characterization of ${\mathcal {N}}^\perp (b),$ given by Rauzy, in terms of an entropy-like quantity called the noise. It follows from our results that no further characterization theorems could result in a still better bound on the complexity of ${\mathcal {N}}^\perp (b)$. We compute the exact descriptive complexity of other naturally occurring sets associated with noise. One of these is complete at the $\boldsymbol {\Pi }^0_4$ level. Finally, we get upper and lower bounds on the Hausdorff dimension of the level sets associated with the noise.
Given a positive integer M and $q \in (1, M+1]$ we consider expansions in base q for real numbers $x \in [0, {M}/{q-1}]$ over the alphabet $\{0, \ldots , M\}$. In particular, we study some dynamical properties of the natural occurring subshift $(\boldsymbol{{V}}_q, \sigma )$ related to unique expansions in such base q. We characterize the set of $q \in \mathcal {V} \subset (1,M+1]$ such that $(\boldsymbol{{V}}_q, \sigma )$ has the specification property and the set of $q \in \mathcal {V}$ such that $(\boldsymbol{{V}}_q, \sigma )$ is a synchronized subshift. Such properties are studied by analysing the combinatorial and dynamical properties of the quasi-greedy expansion of q. We also calculate the size of such classes as subsets of $\mathcal {V}$ giving similar results to those shown by Blanchard [10] and Schmeling in [36] in the context of $\beta $-transformations.
The topic of this course is the discrete subgroups of semisimple Lie groups. We discuss a criterion that ensures that such a subgroup is arithmetic. This criterion is a joint work with Sébastien Miquel, which extends previous work of Selberg and Hee Oh and solves an old conjecture of Margulis. We focus on concrete examples like the group$\mathrm {SL}(d,{\mathbb {R}})$ and we explain how classical tools and new techniques enter the proof: the Auslander projection theorem, the Bruhat decomposition, the Mahler compactness criterion, the Borel density theorem, the Borel–Harish-Chandra finiteness theorem, the Howe–Moore mixing theorem, the Dani–Margulis recurrence theorem, the Raghunathan–Venkataramana finite-index subgroup theorem and so on.
For a given set $S\subseteq \mathbb {Z}_m$ and $\overline {n}\in \mathbb {Z}_m$, let $R_S(\overline {n})$ denote the number of solutions of the equation $\overline {n}=\overline {s}+\overline {s'}$ with ordered pairs $(\overline {s},\overline {s'})\in S^2$. We determine the structure of $A,B\subseteq \mathbb {Z}_m$ with $|(A\cup B)\setminus (A\cap B)|=m-2$ such that $R_{A}(\overline {n})=R_{B}(\overline {n})$ for all $\overline {n}\in \mathbb {Z}_m$, where m is an even integer.
In this paper, we analyze Fourier coefficients of automorphic forms on a finite cover G of an adelic split simply-laced group. Let $\pi $ be a minimal or next-to-minimal automorphic representation of G. We prove that any $\eta \in \pi $ is completely determined by its Whittaker coefficients with respect to (possibly degenerate) characters of the unipotent radical of a fixed Borel subgroup, analogously to the Piatetski-Shapiro–Shalika formula for cusp forms on $\operatorname {GL}_n$. We also derive explicit formulas expressing the form, as well as all its maximal parabolic Fourier coefficient, in terms of these Whittaker coefficients. A consequence of our results is the nonexistence of cusp forms in the minimal and next-to-minimal automorphic spectrum. We provide detailed examples for G of type $D_5$ and $E_8$ with a view toward applications to scattering amplitudes in string theory.
We construct eta-quotient representations of two families of q-series involving the Rogers–Ramanujan continued fraction by establishing related recurrence relations. We also display how these eta-quotient representations can be utilised to dissect certain q-series identities.
We study totally positive definite quadratic forms over the ring of integers $\mathcal {O}_K$ of a totally real biquadratic field $K=\mathbb {Q}(\sqrt {m}, \sqrt {s})$. We restrict our attention to classic forms (i.e. those with all non-diagonal coefficients in $2\mathcal {O}_K$) and prove that no such forms in three variables are universal (i.e. represent all totally positive elements of $\mathcal {O}_K$). Moreover, we show the same result for totally real number fields containing at least one non-square totally positive unit and satisfying some other mild conditions. These results provide further evidence towards Kitaoka's conjecture that there are only finitely many number fields over which such forms exist. One of our main tools are additively indecomposable elements of $\mathcal {O}_K$; we prove several new results about their properties.
The notion of $\theta $-congruent numbers is a generalisation of congruent numbers where one considers triangles with an angle $\theta $ such that $\cos \theta $ is a rational number. In this paper we discuss a criterion for a natural number to be $\theta $-congruent over certain real number fields.