To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that the dynamical degree of an (i.i.d) random sequence of dominant, rational self-maps on projective space is almost surely constant. We then apply this result to height growth and height counting problems in random orbits.
We investigate additive properties of sets $A,$ where $A=\{a_1,a_2,\ldots ,a_k\}$ is a monotone increasing set of real numbers, and the differences of consecutive elements are all distinct. It is known that $|A+B|\geq c|A||B|^{1/2}$ for any finite set of numbers $B.$ The bound is tight up to the constant multiplier. We give a new proof to this result using bounds on crossing numbers of geometric graphs. We construct examples showing the limits of possible improvements. In particular, we show that there are arbitrarily large sets with different consecutive differences and sub-quadratic sumset size.
Let S be the sum-of-digits function in base 2, which returns the number of 1s in the base-2 expansion of a nonnegative integer. For a nonnegative integer t, define the asymptotic density
T. W. Cusick conjectured that ct > 1/2. We have the elementary bound 0 < ct < 1; however, no bound of the form 0 < α ≤ ct or ct ≤ β < 1, valid for all t, is known. In this paper, we prove that ct > 1/2 – ε as soon as t contains sufficiently many blocks of 1s in its binary expansion. In the proof, we provide estimates for the moments of an associated probability distribution; this extends the study initiated by Emme and Prikhod’ko (2017) and pursued by Emme and Hubert (2018).
We prove a quantitative partial result in support of the dynamical Mordell–Lang conjecture (also known as the DML conjecture) in positive characteristic. More precisely, we show the following: given a field K of characteristic p, a semiabelian variety X defined over a finite subfield of K and endowed with a regular self-map $\Phi :X{\longrightarrow } X$ defined over K, a point $\alpha \in X(K)$ and a subvariety $V\subseteq X$, then the set of all nonnegative integers n such that $\Phi ^n(\alpha )\in V(K)$ is a union of finitely many arithmetic progressions along with a subset S with the property that there exists a positive real number A (depending only on X, $\Phi $, $\alpha $ and V) such that for each positive integer M,
We provide an easy method for the construction of characteristic polynomials of simple ordinary abelian varieties ${{\mathcal A}}$ of dimension g over a finite field ${{\mathbb F}}_q$, when $q\ge 4$ and $2g=\rho ^{b-1}(\rho -1)$, for some prime $\rho \ge 5$ with $b\ge 1$. Moreover, we show that ${{\mathcal A}}$ is absolutely simple if $b=1$ and g is prime, but ${{\mathcal A}}$ is not absolutely simple for any prime $\rho \ge 5$ with $b>1$.
For $R(z, w)\in \mathbb {C}(z, w)$ of degree at least 2 in w, we show that the number of rational functions $f(z)\in \mathbb {C}(z)$ solving the difference equation $f(z+1)=R(z, f(z))$ is finite and bounded just in terms of the degrees of R in the two variables. This complements a result of Yanagihara, who showed that any finite-order meromorphic solution to this sort of difference equation must be a rational function. We prove a similar result for the differential equation $f'(z)=R(z, f(z))$, building on a result of Eremenko.
Eigenfunctions of the Fourier transform with prescribed zeros played a major role in the proof that the E8 and the Leech lattice give the best sphere packings in respective dimensions 8 and 24 by Cohn, Kumar, Miller, Radchenko and Viazovska. The functions used for a linear programming argument were constructed as Laplace transforms of certain modular and quasimodular forms. Similar constructions were used by Cohn and Gonçalves to find a function satisfying an optimal uncertainty principle in dimension 12. This paper gives a unified view on these constructions and develops the machinery to find the underlying forms in all dimensions divisible by 4. Furthermore, the positivity of the Fourier coefficients of the quasimodular forms occurring in this context is discussed.
We prove that neither a prime nor an l-almost prime number theorem holds in the class of regular Toeplitz subshifts. But when a quantitative strengthening of the regularity with respect to the periodic structure involving Euler’s totient function is assumed, then the two theorems hold.
We construct a family of fibred threefolds $X_m \to (S , \Delta )$ such that $X_m$ has no étale cover that dominates a variety of general type but it dominates the orbifold $(S,\Delta )$ of general type. Following Campana, the threefolds $X_m$ are called weakly special but not special. The Weak Specialness Conjecture predicts that a weakly special variety defined over a number field has a potentially dense set of rational points. We prove that if m is big enough, the threefolds $X_m$ present behaviours that contradict the function field and analytic analogue of the Weak Specialness Conjecture. We prove our results by adapting the recent method of Ru and Vojta. We also formulate some generalisations of known conjectures on exceptional loci that fit into Campana’s program and prove some cases over function fields.
We show that in a parametric family of linear recurrence sequences $a_1(\alpha ) f_1(\alpha )^n + \cdots + a_k(\alpha ) f_k(\alpha )^n$ with the coefficients $a_i$ and characteristic roots $f_i$, $i=1, \ldots ,k$, given by rational functions over some number field, for all but a set of elements $\alpha $ of bounded height in the algebraic closure of ${\mathbb Q}$, the Skolem problem is solvable, and the existence of a zero in such a sequence can be effectively decided. We also discuss several related questions.
The Corners theorem states that for any α > 0 there exists an N0 such that for any abelian group G with |G| = N ≥ N0 and any subset A ⊂ G×G with |A| ≥ αN2 we can find a corner in A, i.e. there exist x, y, d ∈ G with d ≠ 0 such that (x,y),(x+d,y),(x,y+d) ∈ A.
Here, we consider a stronger version, in which we try to find many corners of the same size. Given such a group G and subset A, for each d ∈ G we define Sd={(x,y) ∈ G × G: (x,y),(x+d,y),(x,y+d) ∈ A}. So |Sd| is the number of corners of size d. Is it true that, provided N is sufficiently large, there must exist some d ∈G\{0} such that |Sd|>(α3-ϵ)N2?
We answer this question in the negative. We do this by relating the problem to a much simpler-looking problem about random variables. Then, using this link, we show that there are sets A with |Sd|>Cα3.13N2 for all d ≠ 0, where C is an absolute constant. We also show that in the special case where $G = {\mathbb{F}}_2^n$, one can always find a d with |Sd|>(α4-ϵ)N2.
We prove that the Kodaira dimension of the n-fold universal family of lattice-polarised holomorphic symplectic varieties with dominant and generically finite period map stabilises to the moduli number when n is sufficiently large. Then we study the transition of Kodaira dimension explicitly, from negative to nonnegative, for known explicit families of polarised symplectic varieties. In particular, we determine the exact transition point in the Beauville–Donagi and Debarre–Voisin cases, where the Borcherds $\Phi _{12}$ form plays a crucial role.
La formule des traces relative de Jacquet–Rallis (pour les groupes unitaires ou les groupes linéaires généraux) est une identité entre des périodes des représentations automorphes et des distributions géométriques. Selon Jacquet et Rallis, une comparaison de ces deux formules des traces relatives devrait aboutir à une démonstration des conjectures de Gan–Gross–Prasad et Ichino–Ikeda pour les groupes unitaires. Les termes géométriques des groupes unitaires ou des groupes linéaires sont indexés par les points rationnels d'un espace quotient commun. Nous établissons que ces termes géométriques peuvent être vus comme des fonctionnelles sur des espaces d'intégrales orbitales semi-simples régulières locales. En outre, nous montrons que point par point ces distributions sont en fait égales, via l'identification des espaces d'intégrales orbitales locales donnée par le transfert et le lemme fondamental (essentiellement connus dans cette situation). Cela donne leur comparaison et cela clôt la partie géométrique du programme de Jacquet–Rallis. Notre résultat principal est donc un analogue de la stabilisation de la partie géométrique de la formule des traces due à Langlands, Kottwitz et Arthur.
We continue the research of the relation $\hspace {1mm}\widetilde {\mid }\hspace {1mm}$ on the set $\beta \mathbb {N}$ of ultrafilters on $\mathbb {N}$, defined as an extension of the divisibility relation. It is a quasiorder, so we see it as an order on the set of $=_{\sim }$-equivalence classes, where $\mathcal {F}=_{\sim }\mathcal {G}$ means that $\mathcal {F}$ and $\mathcal {G}$ are mutually $\hspace {1mm}\widetilde {\mid }$-divisible. Here we introduce a new tool: a relation of congruence modulo an ultrafilter. We first recall the congruence of ultrafilters modulo an integer and show that $=_{\sim }$-equivalent ultrafilters do not necessarily have the same residue modulo $m\in \mathbb {N}$. Then we generalize this relation to congruence modulo an ultrafilter in a natural way. After that, using iterated nonstandard extensions, we introduce a stronger relation, which has nicer properties with respect to addition and multiplication of ultrafilters. Finally, we introduce a strengthening of $\hspace {1mm}\widetilde {\mid }\hspace {1mm}$ and show that it also behaves well with respect to the congruence relation.
We prove a conjecture of Maulik, Pandharipande and Thomas expressing the Gromov–Witten invariants of K3 surfaces for divisibility 2 curve classes in all genera in terms of weakly holomorphic quasi-modular forms of level 2. Then we establish the holomorphic anomaly equation in divisibility 2 in all genera. Our approach involves a refined boundary induction, relying on the top tautological group of the moduli space of smooth curves, together with a degeneration formula for the reduced virtual fundamental class with imprimitive curve classes. We use double ramification relations with target variety as a new tool to prove the initial condition. The relationship between the holomorphic anomaly equation for higher divisibility and the conjectural multiple cover formula of Oberdieck and Pandharipande is discussed in detail and illustrated with several examples.
A set of integers is primitive if it does not contain an element dividing another. Let f(n) denote the number of maximum-size primitive subsets of {1,…,2n}. We prove that the limit α = limn→∞f(n)1/n exists. Furthermore, we present an algorithm approximating α with (1 + ε) multiplicative error in N(ε) steps, showing in particular that α ≈ 1.318. Our algorithm can be adapted to estimate the number of all primitive sets in {1,…,n} as well.
We address another related problem of Cameron and Erdős. They showed that the number of sets containing pairwise coprime integers in {1,…n} is between ${2^{\pi (n)}} \cdot {e^{(1/2 + o(1))\sqrt n }}$ and ${2^{\pi (n)}} \cdot {e^{(2 + o(1))\sqrt n }}$. We show that neither of these bounds is tight: there are in fact ${2^{\pi (n)}} \cdot {e^{(1 + o(1))\sqrt n }}$ such sets.
The aim of this article is to provoke discussion concerning arithmetic properties of the function $p_{d}(n)$ counting partitions of a positive integer n into dth powers, where $d\geq 2$. Apart from results concerning the asymptotic behaviour of $p_{d}(n)$, little is known. In the first part of the paper, we prove certain congruences involving functions counting various types of partitions into dth powers. The second part of the paper is experimental and contains questions and conjectures concerning the arithmetic behaviour of the sequence $(p_{d}(n))_{n\in \mathbb {N}}$, based on computations of $p_{d}(n)$ for $n\leq 10^5$ for $d=2$ and $n\leq 10^{6}$ for $d=3, 4, 5$.