To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the limiting behavior of Maass forms on sequences of large-volume compact quotients of $\operatorname {SL}_d({\mathbb R})/\textrm {SO}(d)$, $d\ge 3$, whose spectral parameter stays in a fixed window. We prove a form of quantum ergodicity in this level aspect which extends results of Le Masson and Sahlsten to the higher rank case.
We define certain arithmetic derivatives on $\mathbb {Z}$ that respect the Leibniz rule, are additive for a chosen equation $a+b=c$, and satisfy a suitable nondegeneracy condition. Using Geometry of Numbers, we unconditionally show their existence with controlled size. We prove that any power-saving improvement on our size bounds would give a version of the $abc$ Conjecture. In fact, we show that the existence of sufficiently small arithmetic derivatives in our sense is equivalent to the $abc$ Conjecture. Our results give an explicit manifestation of an analogy suggested by Vojta in the eighties, relating Geometry of Numbers in arithmetic to derivatives in function fields and Nevanlinna theory. In addition, our construction formalizes the widespread intuition that the $abc$ Conjecture should be related to arithmetic derivatives of some sort.
We obtain an effective analytic formula, with explicit constants, for the number of distinct irreducible factors of a polynomial $f \in \mathbb {Z}[x]$. We use an explicit version of Mertens’ theorem for number fields to estimate a related sum over rational primes. For a given $f \in \mathbb {Z}[x]$, our result yields a finite list of primes that certifies the number of distinct irreducible factors of f.
We establish the Bernstein-centre type of results for the category of mod p representations of $\operatorname {\mathrm {GL}}_2 (\mathbb {Q}_p)$. We treat all the remaining open cases, which occur when p is $2$ or $3$. Our arguments carry over for all primes p. This allows us to remove the restrictions on the residual representation at p in Lue Pan’s recent proof of the Fontaine–Mazur conjecture for Hodge–Tate representations of $\operatorname {\mathrm {Gal}}(\overline {\mathbb Q}/\mathbb {Q})$ with equal Hodge–Tate weights.
We establish sharp bounds for the second moment of symmetric-square L-functions attached to Hecke Maass cusp forms $u_j$ with spectral parameter $t_j$, where the second moment is a sum over $t_j$ in a short interval. At the central point $s=1/2$ of the L-function, our interval is smaller than previous known results. More specifically, for $\left \lvert t_j\right \rvert $ of size T, our interval is of size $T^{1/5}$, whereas the previous best was $T^{1/3}$, from work of Lam. A little higher up on the critical line, our second moment yields a subconvexity bound for the symmetric-square L-function. More specifically, we get subconvexity at $s=1/2+it$ provided $\left \lvert t_j\right \rvert ^{6/7+\delta }\le \lvert t\rvert \le (2-\delta )\left \lvert t_j\right \rvert $ for any fixed $\delta>0$. Since $\lvert t\rvert $ can be taken significantly smaller than $\left \lvert t_j\right \rvert $, this may be viewed as an approximation to the notorious subconvexity problem for the symmetric-square L-function in the spectral aspect at $s=1/2$.
In this paper we study the existence of higher dimensional arithmetic progressions in Meyer sets. We show that the case when the ratios are linearly dependent over ${\mathbb Z}$ is trivial and focus on arithmetic progressions for which the ratios are linearly independent. Given a Meyer set $\Lambda $ and a fully Euclidean model set with the property that finitely many translates of cover $\Lambda $, we prove that we can find higher dimensional arithmetic progressions of arbitrary length with k linearly independent ratios in $\Lambda $ if and only if k is at most the rank of the ${\mathbb Z}$-module generated by . We use this result to characterize the Meyer sets that are subsets of fully Euclidean model sets.
We study families of metrics on automorphic vector bundles associated with representations of the modular group. These metrics are defined using an Eisenstein series construction. We show that in certain cases, the residue of these Eisenstein metrics at their rightmost pole is a harmonic metric for the underlying representation of the modular group. The last section of the paper considers the case of a family of representations that are indecomposable but not irreducible. The analysis of the corresponding Eisenstein metrics, and the location of their rightmost pole, is an open question whose resolution depends on the asymptotics of matrix-valued Kloosterman sums.
In this paper I argue for an association between impurity and explanatory power in contemporary mathematics. This proposal is defended against the ancient and influential idea that purity and explanation go hand-in-hand (Aristotle, Bolzano) and recent suggestions that purity/impurity ascriptions and explanatory power are more or less distinct (Section 1). This is done by analyzing a central and deep result of additive number theory, Szemerédi’s theorem, and various of its proofs (Section 2). In particular, I focus upon the radically impure (ergodic) proof due to Furstenberg (Section 3). Furstenberg’s ergodic proof is striking because it utilizes intuitively foreign and infinitary resources to prove a finitary combinatorial result and does so in a perspicuous fashion. I claim that Furstenberg’s proof is explanatory in light of its clear expression of a crucial structural result, which provides the “reason why” Szemerédi’s theorem is true. This is, however, rather surprising: how can such intuitively different conceptual resources “get a grip on” the theorem to be proved? I account for this phenomenon by articulating a new construal of the content of a mathematical statement, which I call structural content (Section 4). I argue that the availability of structural content saves intuitive epistemic distinctions made in mathematical practice and simultaneously explicates the intervention of surprising and explanatorily rich conceptual resources. Structural content also disarms general arguments for thinking that impurity and explanatory power might come apart. Finally, I sketch a proposal that, once structural content is in hand, impure resources lead to explanatory proofs via suitably understood varieties of simplification and unification (Section 5).
We show that geodesics in $\mathbf {H}$ attached to a maximal split torus or a real quadratic torus in $GL_{2, \mathbf {Q}}$ are the only irreducible algebraic curves in $\mathbf {H}$ whose image in $\mathbf {R}^2$ via the j-invariant is contained in an algebraic curve.
We explain how to develop the twisted doubling integrals for Brylinski–Deligne extensions of connected classical groups. This gives a family of global integrals which represent Euler products for this class of nonlinear extensions.
In the present article, we study the following problem. Let $\boldsymbol {G}$ be a linear algebraic group over $\mathbb {Q}$, let $\Gamma$ be an arithmetic lattice, and let $\boldsymbol {H}$ be an observable $\mathbb {Q}$-subgroup. There is a $H$-invariant measure $\mu _H$ supported on the closed submanifold $H\Gamma /\Gamma$. Given a sequence $(g_n)$ in $G$, we study the limiting behavior of $(g_n)_*\mu _H$ under the weak-$*$ topology. In the non-divergent case, we give a rather complete classification. We further supplement this by giving a criterion of non-divergence and prove non-divergence for arbitrary sequence $(g_n)$ for certain large $\boldsymbol {H}$. We also discuss some examples and applications of our result. This work can be viewed as a natural extension of the work of Eskin–Mozes–Shah and Shapira–Zheng.
Let $\mathrm{AP}_k=\{a,a+d,\ldots,a+(k-1)d\}$ be an arithmetic progression. For $\varepsilon>0$ we call a set $\mathrm{AP}_k(\varepsilon)=\{x_0,\ldots,x_{k-1}\}$ an $\varepsilon$-approximate arithmetic progression if for some a and d, $|x_i-(a+id)|<\varepsilon d$ holds for all $i\in\{0,1\ldots,k-1\}$. Complementing earlier results of Dumitrescu (2011, J. Comput. Geom.2(1) 16–29), in this paper we study numerical aspects of Van der Waerden, Szemerédi and Furstenberg–Katznelson like results in which arithmetic progressions and their higher dimensional extensions are replaced by their $\varepsilon$-approximation.
We show that there exist uncountably many (tall and nontall) pairwise nonisomorphic density-like ideals on $\omega $ which are not generalized density ideals. In addition, they are nonpathological. This answers a question posed by Borodulin-Nadzieja et al. in [this Journal, vol. 80 (2015), pp. 1268–1289]. Lastly, we provide sufficient conditions for a density-like ideal to be necessarily a generalized density ideal.
A celebrated result by Davis, Putnam, Robinson, and Matiyasevich shows that a set of integers is listable if and only if it is positive existentially definable in the language of arithmetic. We investigate analogues of this result over structures endowed with a listable presentation. When such an analogue holds, the structure is said to have the DPRM property. We prove several results addressing foundational aspects around this problem, such as uniqueness of the listable presentation, transference of the DPRM property under interpretation, and its relation with positive existential bi-interpretability. A first application of our results is the rigorous proof of (strong versions of) several folklore facts regarding transference of the DPRM property. Another application of the theory we develop is that it will allow us to link various Diophantine conjectures to the question of whether the DPRM property holds for global fields. This last topic includes a study of the number of existential quantifiers needed to define a Diophantine set.
In addition to the features of the two-parameter Chinese restaurant process (CRP), the restaurant under consideration has a cocktail bar and hence allows for a wider range of (bar and table) occupancy mechanisms. The model depends on three real parameters, $\alpha$, $\theta_1$, and $\theta_2$, fulfilling certain conditions. Results known for the two-parameter CRP are carried over to this model. We study the number of customers at the cocktail bar, the number of customers at each table, and the number of occupied tables after n customers have entered the restaurant. For $\alpha>0$ the number of occupied tables, properly scaled, is asymptotically three-parameter Mittag–Leffler distributed as n tends to infinity. We provide representations for the two- and three-parameter Mittag–Leffler distribution leading to efficient random number generators for these distributions. The proofs draw heavily from methods known for exchangeable random partitions, martingale methods known for generalized Pólya urns, and results known for the two-parameter CRP.
For a subset S of nonnegative integers and a vector $\mathbf {a}=(a_1,\ldots ,a_k)$ of positive integers, define the set $V^{\prime }_S(\mathbf {a})=\{ a_1s_1+\cdots +a_ks_k : s_i\in S\}-\{0\}$. For a positive integer n, let $\mathcal T(n)$ be the set of integers greater than or equal to n. We consider the problem of finding all vectors $\mathbf {a}$ satisfying $V^{\prime }_S(\mathbf {a})=\mathcal T(n)$ when S is the set of (generalised) m-gonal numbers and n is a positive integer. In particular, we completely resolve the case when S is the set of triangular numbers.
We investigate, for given positive integers a and b, the least positive integer $c=c(a,b)$ such that the quotient $\varphi (c!\kern-1.2pt)/\varphi (a!\kern-1.2pt)\varphi (b!\kern-1.2pt)$ is an integer. We derive results on the limit of $c(a,b)/(a+b)$ as a and b tend to infinity and show that $c(a,b)>a+b$ for all pairs of positive integers $(a,b)$, with the exception of a set of density zero.
We carry out a thorough study of weight-shifting operators on Hilbert modular forms in characteristic p, generalising the author’s prior work with Sasaki to the case where p is ramified in the totally real field. In particular, we use the partial Hasse invariants and Kodaira–Spencer filtrations defined by Reduzzi and Xiao to improve on Andreatta and Goren’s construction of partial $\Theta $-operators, obtaining ones whose effect on weights is optimal from the point of view of geometric Serre weight conjectures. Furthermore, we describe the kernels of partial $\Theta $-operators in terms of images of geometrically constructed partial Frobenius operators. Finally, we apply our results to prove a partial positivity result for minimal weights of mod p Hilbert modular forms.
Let F be a Siegel cusp form of degree $2$, even weight $k \ge 2$, and odd square-free level N. We undertake a detailed study of the analytic properties of Fourier coefficients $a(F,S)$ of F at fundamental matrices S (i.e., with $-4\det (S)$ equal to a fundamental discriminant). We prove that as S varies along the equivalence classes of fundamental matrices with $\det (S) \asymp X$, the sequence $a(F,S)$ has at least $X^{1-\varepsilon }$ sign changes and takes at least $X^{1-\varepsilon }$ ‘large values’. Furthermore, assuming the generalized Riemann hypothesis as well as the refined Gan–Gross–Prasad conjecture, we prove the bound $\lvert a(F,S)\rvert \ll _{F, \varepsilon } \frac {\det (S)^{\frac {k}2 - \frac {1}{2}}}{ \left (\log \lvert \det (S)\rvert \right )^{\frac 18 - \varepsilon }}$ for fundamental matrices S.