To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $d_{3}(n)$ be the divisor function of order three. Let $g$ be a Hecke–Maass form for $\unicode[STIX]{x1D6E4}$ with $\unicode[STIX]{x1D6E5}g=(1/4+t^{2})g$. Suppose that $\unicode[STIX]{x1D706}_{g}(n)$ is the $n$th Hecke eigenvalue of $g$. Using the Voronoi summation formula for $\unicode[STIX]{x1D706}_{g}(n)$ and the Kuznetsov trace formula, we estimate a shifted convolution sum of $d_{3}(n)$ and $\unicode[STIX]{x1D706}_{g}(n)$ and show that
This corrects and improves the result of the author [‘Shifted convolution sum of $d_{3}$ and the Fourier coefficients of Hecke–Maass forms’, Bull. Aust. Math. Soc.92 (2015), 195–204].
Gallagher’s theorem is a sharpening and extension of the Littlewood conjecture that holds for almost all tuples of real numbers. We provide a fibre refinement, solving a problem posed by Beresnevich, Haynes and Velani in 2015. Hitherto, this was only known on the plane, as previous approaches relied heavily on the theory of continued fractions. Using reduced successive minima in lieu of continued fractions, we develop the structural theory of Bohr sets of arbitrary rank, in the context of diophantine approximation. In addition, we generalise the theory and result to the inhomogeneous setting. To deal with this inhomogeneity, we employ diophantine transference inequalities in lieu of the three distance theorem.
We obtain a new lower bound on the size of the value set $\mathscr{V}(f)=f(\mathbb{F}_{p})$ of a sparse polynomial $f\in \mathbb{F}_{p}[X]$ over a finite field of $p$ elements when $p$ is prime. This bound is uniform with respect to the degree and depends on some natural arithmetic properties of the degrees of the monomial terms of $f$ and the number of these terms. Our result is stronger than those that can be extracted from the bounds on multiplicities of individual values in $\mathscr{V}(f)$.
We show that there is an absolute $c>0$ such that if $A$ is a finite set of integers, then there is a set $S\subset A$ of size at least $\log ^{1+c}|A|$ such that the restricted sumset $\{s+s^{\prime }:s,s^{\prime }\in S\text{ and }s\neq s^{\prime }\}$ is disjoint from $A$. (The logarithm here is to base $3$.)
In this article we prove the explicit Mordell Conjecture for large families of curves. In addition, we introduce a method, of easy application, to compute all rational points on curves of quite general shape and increasing genus. The method bases on some explicit and sharp estimates for the height of such rational points, and the bounds are small enough to successfully implement a computer search. As an evidence of the simplicity of its application, we present a variety of explicit examples and explain how to produce many others. In the appendix our method is compared in detail to the classical method of Manin–Demjanenko and the analysis of our explicit examples is carried to conclusion.
We prove the analogue of the Ax–Lindemann–Weierstrass theorem for not necessarily arithmetic lattices of the automorphism group of the complex unit ball $\mathbb{B}^{n}$ using methods of several complex variables, algebraic geometry and Kähler geometry. Consider a torsion-free lattice $\unicode[STIX]{x1D6E4}\,\subset \,\text{Aut}(\mathbb{B}^{n})$ and the associated uniformization map $\unicode[STIX]{x1D70B}:\mathbb{B}^{n}\rightarrow \mathbb{B}^{n}/\unicode[STIX]{x1D6E4}=:X_{\unicode[STIX]{x1D6E4}}$. Given an algebraic subset $S\,\subset \,\mathbb{B}^{n}$ and writing $Z$ for the Zariski closure of $\unicode[STIX]{x1D70B}(S)$ in $X_{\unicode[STIX]{x1D6E4}}$ (which is equipped with a canonical quasi-projective structure), in some precise sense we realize $Z$ as a variety uniruled by images of algebraic subsets under the uniformization map, and study the asymptotic geometry of an irreducible component $\widetilde{Z}$ of $\unicode[STIX]{x1D70B}^{-1}(Z)$ as $\widetilde{Z}$ exits the boundary $\unicode[STIX]{x2202}\mathbb{B}^{n}$ by exploiting the strict pseudoconvexity of $\mathbb{B}^{n}$, culminating in the proof that $\widetilde{Z}\,\subset \,\mathbb{B}^{n}$ is totally geodesic. Our methodology sets the stage for tackling problems in functional transcendence theory for arbitrary lattices of $\text{ Aut}(\unicode[STIX]{x1D6FA})$ for (possibly reducible) bounded symmetric domains $\unicode[STIX]{x1D6FA}$.
Let ${\mathcal{X}}$ be a regular variety, flat and proper over a complete regular curve over a finite field such that the generic fiber $X$ is smooth and geometrically connected. We prove that the Brauer group of ${\mathcal{X}}$ is finite if and only Tate’s conjecture for divisors on $X$ holds and the Tate–Shafarevich group of the Albanese variety of $X$ is finite, generalizing a theorem of Artin and Grothendieck for surfaces to arbitrary relative dimension. We also give a formula relating the orders of the group under the assumption that they are finite, generalizing the known formula for a surface.
For every integer $k\geq 2$ and every $A\subseteq \mathbb{N}$, we define the $k$-directions sets of $A$ as $D^{k}(A):=\{\boldsymbol{a}/\Vert \boldsymbol{a}\Vert :\boldsymbol{a}\in A^{k}\}$ and $D^{\text{}\underline{k}}(A):=\{\boldsymbol{a}/\Vert \boldsymbol{a}\Vert :\boldsymbol{a}\in A^{\text{}\underline{k}}\}$, where $\Vert \cdot \Vert$ is the Euclidean norm and $A^{\text{}\underline{k}}:=\{\boldsymbol{a}\in A^{k}:a_{i}\neq a_{j}\text{ for all }i\neq j\}$. Via an appropriate homeomorphism, $D^{k}(A)$ is a generalisation of the ratio set$R(A):=\{a/b:a,b\in A\}$. We study $D^{k}(A)$ and $D^{\text{}\underline{k}}(A)$ as subspaces of $S^{k-1}:=\{\boldsymbol{x}\in [0,1]^{k}:\Vert \boldsymbol{x}\Vert =1\}$. In particular, generalising a result of Bukor and Tóth, we provide a characterisation of the sets $X\subseteq S^{k-1}$ such that there exists $A\subseteq \mathbb{N}$ satisfying $D^{\text{}\underline{k}}(A)^{\prime }=X$, where $Y^{\prime }$ denotes the set of accumulation points of $Y$. Moreover, we provide a simple sufficient condition for $D^{k}(A)$ to be dense in $S^{k-1}$. We conclude with questions for further research.
Suppose $a^{2}(a^{2}+1)$ divides $b^{2}(b^{2}+1)$ with $b>a$. We improve a previous result and prove a gap principle, without any additional assumptions, namely $b\gg a(\log a)^{1/8}/(\log \log a)^{12}$. We also obtain $b\gg _{\unicode[STIX]{x1D716}}a^{15/14-\unicode[STIX]{x1D716}}$ under the abc conjecture.
In this work we deal with extreme value theory in the context of continued fractions using techniques from probability theory, ergodic theory and real analysis. We give an upper bound for the rate of convergence in the Doeblin–Iosifescu asymptotics for the exceedances of digits obtained from the regular continued fraction expansion of a number chosen randomly from $(0,1)$ according to the Gauss measure. As a consequence, we significantly improve the best known upper bound on the rate of convergence of the maxima in this case. We observe that the asymptotics of order statistics and the extremal point process can also be investigated using our methods.
Let $F$ be a non-Archimedean locally compact field of residual characteristic $p$ with Weil group ${\mathcal{W}}_{F}$. Let $\unicode[STIX]{x1D70E}$ be an irreducible smooth complex representation of ${\mathcal{W}}_{F}$, realized as the Langlands parameter of an irreducible cuspidal representation $\unicode[STIX]{x1D70B}$ of a general linear group over $F$. In an earlier paper we showed that the ramification structure of $\unicode[STIX]{x1D70E}$ is determined by the fine structure of the endo-class $\unicode[STIX]{x1D6E9}$ of the simple character contained in $\unicode[STIX]{x1D70B}$, in the sense of Bushnell and Kutzko. The connection is made via the Herbrand function $\unicode[STIX]{x1D6F9}_{\unicode[STIX]{x1D6E9}}$ of $\unicode[STIX]{x1D6E9}$. In this paper we concentrate on the fundamental Carayol case in which $\unicode[STIX]{x1D70E}$ is totally wildly ramified with Swan exponent not divisible by $p$. We show that, for such $\unicode[STIX]{x1D70E}$, the associated Herbrand function satisfies a certain functional equation, and that this property essentially characterizes this class of representations. We calculate $\unicode[STIX]{x1D6F9}_{\unicode[STIX]{x1D6E9}}$ explicitly, in terms of a classical Herbrand function arising naturally from the classification of simple characters. We describe exactly the class of functions arising as Herbrand functions $\unicode[STIX]{x1D6F9}_{\unicode[STIX]{x1D6EF}}$, as $\unicode[STIX]{x1D6EF}$ varies over the set of totally wild endo-classes of Carayol type. In a separate argument, we derive a complete description of the restriction of $\unicode[STIX]{x1D70E}$ to any ramification subgroup and hence a detailed interpretation of the Herbrand function. This gives concrete information concerning the Langlands correspondence.
We show that for all large enough x the interval [x, x + x1/2 log1.39x] contains numbers with a prime factor p > x18/19. Our work builds on the previous works of Heath–Brown and Jia (1998) and Jia and Liu (2000) concerning the same problem for the longer intervals [x, x + x1/2 + ϵ]. We also incorporate some ideas from Harman’s book Prime-detecting sieves (2007). The main new ingredient that we use is the iterative argument of Matomäki and Radziwiłł (2016) for bounding Dirichlet polynomial mean values, which is applied to obtain Type II information. This allows us to take shorter intervals than in the above-mentioned previous works. We have also had to develop ideas to avoid losing any powers of log x when applying Harman’s sieve method.
We show that spacetime diagrams of linear cellular automata $\unicode[STIX]{x1D6F7}:\,\mathbb{F}_{p}^{\mathbb{Z}}\rightarrow \mathbb{F}_{p}^{\mathbb{Z}}$with $(-p)$-automatic initial conditions are automatic. This extends existing results on initial conditions that are eventually constant. Each automatic spacetime diagram defines a $(\unicode[STIX]{x1D70E},\unicode[STIX]{x1D6F7})$-invariant subset of $\mathbb{F}_{p}^{\mathbb{Z}}$, where $\unicode[STIX]{x1D70E}$ is the left shift map, and if the initial condition is not eventually periodic, then this invariant set is nontrivial. For the Ledrappier cellular automaton we construct a family of nontrivial $(\unicode[STIX]{x1D70E},\unicode[STIX]{x1D6F7})$-invariant measures on $\mathbb{F}_{3}^{\mathbb{Z}}$. Finally, given a linear cellular automaton $\unicode[STIX]{x1D6F7}$, we construct a nontrivial $(\unicode[STIX]{x1D70E},\unicode[STIX]{x1D6F7})$-invariant measure on $\mathbb{F}_{p}^{\mathbb{Z}}$ for all but finitely many $p$.
Let $F$ be a totally real field and let $p$ be an odd prime which is totally split in $F$. We define and study one-dimensional ‘partial’ eigenvarieties interpolating Hilbert modular forms over $F$ with weight varying only at a single place $v$ above $p$. For these eigenvarieties, we show that methods developed by Liu, Wan and Xiao apply and deduce that, over a boundary annulus in weight space of sufficiently small radius, the partial eigenvarieties decompose as a disjoint union of components which are finite over weight space. We apply this result to prove the parity version of the Bloch–Kato conjecture for finite slope Hilbert modular forms with trivial central character (with a technical assumption if $[F:\mathbb{Q}]$ is odd), by reducing to the case of parallel weight $2$. As another consequence of our results on partial eigenvarieties, we show, still under the assumption that $p$ is totally split in $F$, that the ‘full’ (dimension $1+[F:\mathbb{Q}]$) cuspidal Hilbert modular eigenvariety has the property that many (all, if $[F:\mathbb{Q}]$ is even) irreducible components contain a classical point with noncritical slopes and parallel weight $2$ (with some character at $p$ whose conductor can be explicitly bounded), or any other algebraic weight.
In this paper we prove some one-level density results for the low-lying zeros of families of quadratic and quartic Hecke $L$-functions of the Gaussian field. As corollaries, we deduce that at least 94.27% and 5%, respectively, of the members of the quadratic family and the quartic family do not vanish at the central point.
Let $\mathcal {P}(\mathbf{N})$ be the power set of N. We say that a function $\mu ^\ast : \mathcal {P}(\mathbf{N}) \to \mathbf{R}$ is an upper density if, for all X, Y ⊆ N and h, k ∈ N+, the following hold: (f1) $\mu ^\ast (\mathbf{N}) = 1$; (f2) $\mu ^\ast (X) \le \mu ^\ast (Y)$ if X ⊆ Y; (f3) $\mu ^\ast (X \cup Y) \le \mu ^\ast (X) + \mu ^\ast (Y)$; (f4) $\mu ^\ast (k\cdot X) = ({1}/{k}) \mu ^\ast (X)$, where k · X : = {kx: x ∈ X}; and (f5) $\mu ^\ast (X + h) = \mu ^\ast (X)$. We show that the upper asymptotic, upper logarithmic, upper Banach, upper Buck, upper Pólya and upper analytic densities, together with all upper α-densities (with α a real parameter ≥ −1), are upper densities in the sense of our definition. Moreover, we establish the mutual independence of axioms (f1)–(f5), and we investigate various properties of upper densities (and related functions) under the assumption that (f2) is replaced by the weaker condition that $\mu ^\ast (X)\le 1$ for every X ⊆ N. Overall, this allows us to extend and generalize results so far independently derived for some of the classical upper densities mentioned above, thus introducing a certain amount of unification into the theory.
In this note we examine Littlewood’s proof of the prime number theorem. We show that this can be extended to provide an equivalence between the prime number theorem and the nonvanishing of Riemann’s zeta-function on the one-line. Our approach goes through the theory of almost periodic functions and is self-contained.
Given a positive integer n let ω (n) denote the number of distinct prime factors of n, and let a be fixed positive integer. Extending work of Kubilius, we develop a bivariate probabilistic model to study the joint distribution of the deterministic vectors (ω(n), ω(n + a)), with n ≤ x as x → ∞, where n and n + a belong to a subset of ℕ with suitable properties. We thus establish a quantitative version of a bivariate analogue of the Erdős–Kac theorem on proper subsets of ℕ.
We give three applications of this result. First, if y = x0(1) is not too small then we prove (in a quantitative way) that the y-truncated Möbius function μy has small binary autocorrelations. This gives a new proof of a result due to Daboussi and Sarkőzy. Second, if μ(n; u) :=e(uω(n)), where u ∈ ℝ then we show that μ(.; u) also has small binary autocorrelations whenever u = o(1) and $u\sqrt {\mathop {\log }\nolimits_2 x}\to \infty$, as x → ∞. These can be viewed as partial results in the direction of a conjecture of Chowla on binary correlations of the Möbius function.
Our final application is related to a problem of Erdős and Mirsky on the number of consecutive integers less than x with the same number of divisors. If $y = x^{{1 \over \beta }}$, where β = β(x) satisfies certain mild growth conditions, we prove a lower bound for the number of consecutive integers n ≤ x that have the same number of y-smooth divisors. Our bound matches the order of magnitude of the one conjectured for the original Erdős-Mirsky problem.
A result of Bleher, Chinburg, Greenberg, Kakde, Pappas, Sharifi and Taylor has initiated the topic of higher codimension Iwasawa theory. As a generalization of the classical Iwasawa main conjecture, they prove a relationship between analytic objects (a pair of Katz’s $2$-variable $p$-adic $L$-functions) and algebraic objects (two ‘everywhere unramified’ Iwasawa modules) involving codimension two cycles in a $2$-variable Iwasawa algebra. We prove a result by considering the restriction to an imaginary quadratic field $K$ (where an odd prime $p$ splits) of an elliptic curve $E$, defined over $\mathbb{Q}$, with good supersingular reduction at $p$. On the analytic side, we consider eight pairs of $2$-variable $p$-adic $L$-functions in this setup (four of the $2$-variable $p$-adic $L$-functions have been constructed by Loeffler and a fifth $2$-variable $p$-adic $L$-function is due to Hida). On the algebraic side, we consider modifications of fine Selmer groups over the $\mathbb{Z}_{p}^{2}$-extension of $K$. We also provide numerical evidence, using algorithms of Pollack, towards a pseudonullity conjecture of Coates–Sujatha.