To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we investigate $\unicode[STIX]{x1D70B}(m,n)$, the number of partitions of the bipartite number$(m,n)$ into steadily decreasing parts, introduced by Carlitz [‘A problem in partitions’, Duke Math. J.30 (1963), 203–213]. We give a relation between $\unicode[STIX]{x1D70B}(m,n)$ and the crank statistic $M(m,n)$ for integer partitions. Using this relation, we establish some uniform asymptotic formulas for $\unicode[STIX]{x1D70B}(m,n)$.
We present a complete characterisation of the radial asymptotics of degree-one Mahler functions as $z$ approaches roots of unity of degree $k^{n}$, where $k$ is the base of the Mahler function, as well as some applications concerning transcendence and algebraic independence. For example, we show that the generating function of the Thue–Morse sequence and any Mahler function (to the same base) which has a nonzero Mahler eigenvalue are algebraically independent over $\mathbb{C}(z)$. Finally, we discuss asymptotic bounds towards generic points on the unit circle.
We give a new hypergeometric construction of rational approximations to ζ(4), which absorbs the earlier one from 2003 based on Bailey's 9F8 hypergeometric integrals. With the novel ingredients we are able to gain better control of the arithmetic and produce a record irrationality measure for ζ(4).
We generalize current known distribution results on Shanks–Rényi prime number races to the case where arbitrarily many residue classes are involved. Our method handles both the classical case that goes back to Chebyshev and function field analogues developed in the recent years. More precisely, let $\unicode[STIX]{x1D70B}(x;q,a)$ be the number of primes up to $x$ that are congruent to $a$ modulo $q$. For a fixed integer $q$ and distinct invertible congruence classes $a_{0},a_{1},\ldots ,a_{D}$, assuming the generalized Riemann Hypothesis and a weak version of the linear independence hypothesis, we show that the set of real $x$ for which the inequalities $\unicode[STIX]{x1D70B}(x;q,a_{0})>\unicode[STIX]{x1D70B}(x;q,a_{1})>\cdots >\unicode[STIX]{x1D70B}(x;q,a_{D})$ are simultaneously satisfied admits a logarithmic density.
Let ${\mathcal{A}}$ be a star-shaped polygon in the plane, with rational vertices, containing the origin. The number of primitive lattice points in the dilate $t{\mathcal{A}}$ is asymptotically $\frac{6}{\unicode[STIX]{x1D70B}^{2}}\text{Area}(t{\mathcal{A}})$ as $t\rightarrow \infty$. We show that the error term is both $\unicode[STIX]{x1D6FA}_{\pm }(t\sqrt{\log \log t})$ and $O(t(\log t)^{2/3}(\log \log t)^{4/3})$. Both bounds extend (to the above class of polygons) known results for the isosceles right triangle, which appear in the literature as bounds for the error term in the summatory function for Euler’s $\unicode[STIX]{x1D719}(n)$.
Higher dimensional analogues of the modular group $\mathit{PSL}(2,\mathbb{Z})$ are closely related to hyperbolic reflection groups and Coxeter polyhedra with big symmetry groups. In this context, we develop a theory and dissection properties of ideal hyperbolic $k$-rectified regular polyhedra, which is of independent interest. As an application, we can identify the covolumes of the quaternionic modular groups with certain explicit rational multiples of the Riemann zeta value $\unicode[STIX]{x1D701}(3)$.
In this paper, we prove a conjecture of Wei Zhang on comparison of certain local relative characters from which we draw some consequences for the Ichino–Ikeda conjecture for unitary groups.
We determine the order of magnitude of $\mathbb{E}|\sum _{n\leqslant x}f(n)|^{2q}$, where $f(n)$ is a Steinhaus or Rademacher random multiplicative function, and $0\leqslant q\leqslant 1$. In the Steinhaus case, this is equivalent to determining the order of $\lim _{T\rightarrow \infty }\frac{1}{T}\int _{0}^{T}|\sum _{n\leqslant x}n^{-it}|^{2q}\,dt$.
In particular, we find that $\mathbb{E}|\sum _{n\leqslant x}f(n)|\asymp \sqrt{x}/(\log \log x)^{1/4}$. This proves a conjecture of Helson that one should have better than squareroot cancellation in the first moment and disproves counter-conjectures of various other authors. We deduce some consequences for the distribution and large deviations of $\sum _{n\leqslant x}f(n)$.
The proofs develop a connection between $\mathbb{E}|\sum _{n\leqslant x}f(n)|^{2q}$ and the $q$th moment of a critical, approximately Gaussian, multiplicative chaos and then establish the required estimates for that. We include some general introductory discussion about critical multiplicative chaos to help readers unfamiliar with that area.
Recently, Brietzke, Silva and Sellers [‘Congruences related to an eighth order mock theta function of Gordon and McIntosh’, J. Math. Anal. Appl.479 (2019), 62–89] studied the number $v_{0}(n)$ of overpartitions of $n$ into odd parts without gaps between the nonoverlined parts, whose generating function is related to the mock theta function $V_{0}(q)$ of order 8. In this paper we first present a short proof of the 3-dissection for the generating function of $v_{0}(2n)$. Then we establish three congruences for $v_{0}(n)$ along certain progressions which are subsequences of the integers $4n+3$.
As a consequence of Nesterenko’s proof of the algebraic independence of the three Ramanujan functions $R(\unicode[STIX]{x1D70C}),Q(\unicode[STIX]{x1D70C}),$ and $P(\unicode[STIX]{x1D70C})$ for any algebraic number $\unicode[STIX]{x1D70C}$ with $0<\unicode[STIX]{x1D70C}<1$, the algebraic independence or dependence of various sets of these numbers is already known for positive even integers $s$. In this paper, we investigate linear forms in the above zeta functions and determine the dimension of linear spaces spanned by such linear forms. In particular, it is established that for any positive integer $m$ the solutions of
with $t_{s},u_{s},v_{s},w_{s}\in \mathbb{Q}$$(1\leq s\leq m)$ form a $\mathbb{Q}$-vector space of dimension $m$. This proves a conjecture from the Ph.D. thesis of Stein, who, in 2012, was inspired by the relation $-2\unicode[STIX]{x1D701}_{F}(2)+\unicode[STIX]{x1D701}_{F}^{\ast }(2)+5\unicode[STIX]{x1D701}_{L}^{\ast }(2)=0$. All the results are also true for zeta functions in $2s$, where the Fibonacci and Lucas numbers are replaced by numbers from sequences satisfying a second-order recurrence formula.
Using an idea of Doug Lind, we give a lower bound for the Perron–Frobenius degree of a Perron number that is not totally real, in terms of the layout of its Galois conjugates in the complex plane. As an application, we prove that there are cubic Perron numbers whose Perron–Frobenius degrees are arbitrary large, a result known to Lind, McMullen and Thurston. A similar result is proved for bi-Perron numbers.
where $p$ is a polynomial with at least one irrational coefficient on non-constant terms, $d$ is any real number and, for $a\in [0,\infty )$, $a~\text{mod}~1$ is the fractional part of $a$. With the help of a method recently introduced by Wu, we show that the closure of $A$ must have full Hausdorff dimension.
Suppose that $\mathbf{G}$ is a connected reductive group over a finite extension $F/\mathbb{Q}_{p}$ and that $C$ is a field of characteristic $p$. We prove that the group $\mathbf{G}(F)$ admits an irreducible admissible supercuspidal, or equivalently supersingular, representation over $C$.
Let $\unicode[STIX]{x1D707}(m,n)$ (respectively, $\unicode[STIX]{x1D702}(m,n)$) denote the number of odd-balanced unimodal sequences of size $2n$ and rank $m$ with even parts congruent to $2\!\!\hspace{0.6em}{\rm mod}\hspace{0.2em}4$ (respectively, $0\!\!\hspace{0.6em}{\rm mod}\hspace{0.2em}4$) and odd parts at most half the peak. We prove that two-variable generating functions for $\unicode[STIX]{x1D707}(m,n)$ and $\unicode[STIX]{x1D702}(m,n)$ are simultaneously quantum Jacobi forms and mock Jacobi forms. These odd-balanced unimodal rank generating functions are also duals to partial theta functions originally studied by Ramanujan. Our results also show that there is a single $C^{\infty }$ function in $\mathbb{R}\times \mathbb{R}$ to which the errors to modularity of these two different functions extend. We also exploit the quantum Jacobi properties of these generating functions to show, when viewed as functions of the two variables $w$ and $q$, how they can be expressed as the same simple Laurent polynomial when evaluated at pairs of roots of unity. Finally, we make a conjecture which fully characterizes the parity of the number of odd-balanced unimodal sequences of size $2n$ with even parts congruent to $0\!\!\hspace{0.6em}{\rm mod}\hspace{0.2em}4$ and odd parts at most half the peak.
Qi and Chapman [‘Two closed forms for the Bernoulli polynomials’, J. Number Theory159 (2016), 89–100] gave a closed form expression for the Bernoulli polynomials as polynomials with coefficients involving Stirling numbers of the second kind. We extend the formula to the degenerate Bernoulli polynomials, replacing the Stirling numbers by degenerate Stirling numbers of the second kind.
Let $\overline{t}(n)$ be the number of overpartitions in which (i) the difference between successive parts may be odd only if the larger part is overlined and (ii) if the smallest part is odd then it is overlined. Ramanujan-type congruences for $\overline{t}(n)$ modulo small powers of $2$ and $3$ have been established. We present two infinite families of congruences modulo $5$ and $27$ for $\overline{t}(n)$, the first of which generalises a recent result of Chern and Hao [‘Congruences for two restricted overpartitions’, Proc. Math. Sci.129 (2019), Article 31].
Ihara et al. proved the derivation relation for multiple zeta values. The first-named author obtained its counterpart for finite multiple zeta values in ${\mathcal{A}}$. In this paper, we present its generalization in $\widehat{{\mathcal{A}}}$.
We determine, up to multiplicative constants, the number of integers $n\leq x$ that have a divisor in $(y,2y]$ and no prime factor $\leq w$. Our estimate is uniform in $x,y,w$. We apply this to determine the order of the number of distinct integers in the $N\times N$ multiplication table, which are free of prime factors $\leq w$, and the number of distinct fractions of the form $(a_{1}a_{2})/(b_{1}b_{2})$ with $1\leq a_{1}\leq b_{1}\leq N$ and $1\leq a_{2}\leq b_{2}\leq N$.
Let $\mathbb{Z}$ and $\mathbb{Z}^{+}$ be the set of integers and the set of positive integers, respectively. For $a,b,c,d,n\in \mathbb{Z}^{+}$, let $t(a,b,c,d;n)$ be the number of representations of $n$ by $\frac{1}{2}ax(x+1)+\frac{1}{2}by(y+1)+\frac{1}{2}cz(z+1)+\frac{1}{2}dw(w+1)$ with $x,y,z,w\in \mathbb{Z}$. Using theta function identities we prove 13 transformation formulas for $t(a,b,c,d;n)$ and evaluate $t(2,3,3,8;n)$, $t(1,1,6,24;n)$ and $t(1,1,6,8;n)$.