To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $F$ be a $p$-adic field and choose $k$ an algebraic closure of $\mathbb{F}_{\ell }$, with $\ell$ different from $p$. We define “nilpotent lifts” of irreducible generic $k$-representations of $GL_{n}(F)$, which take coefficients in Artin local $k$-algebras. We show that an irreducible generic $\ell$-modular representation $\unicode[STIX]{x1D70B}$ of $GL_{n}(F)$ is uniquely determined by its collection of Rankin–Selberg gamma factors $\unicode[STIX]{x1D6FE}(\unicode[STIX]{x1D70B}\times \widetilde{\unicode[STIX]{x1D70F}},X,\unicode[STIX]{x1D713})$ as $\widetilde{\unicode[STIX]{x1D70F}}$ varies over nilpotent lifts of irreducible generic $k$-representations $\unicode[STIX]{x1D70F}$ of $GL_{t}(F)$ for $t=1,\ldots ,\lfloor \frac{n}{2}\rfloor$. This gives a characterization of the mod-$\ell$ local Langlands correspondence in terms of gamma factors, assuming it can be extended to a surjective local Langlands correspondence on nilpotent lifts.
Symplectic finite semifields can be used to construct nonlinear binary codes of Kerdock type (i.e., with the same parameters of the Kerdock codes, a subclass of Delsarte–Goethals codes). In this paper, we introduce nonbinary Delsarte–Goethals codes of parameters $(q^{m+1}\ ,\ q^{m(r+2)+2}\ ,\ {\frac{q-1}{q}(q^{m+1}-q^{\frac{m+1}{2}+r})})$ over a Galois field of order $q=2^l$, for all $0\le r\le\frac{m-1}{2}$, with m ≥ 3 odd, and show the connection of this construction to finite semifields.
This paper completes the construction of $p$-adic $L$-functions for unitary groups. More precisely, in Harris, Li and Skinner [‘$p$-adic $L$-functions for unitary Shimura varieties. I. Construction of the Eisenstein measure’, Doc. Math.Extra Vol. (2006), 393–464 (electronic)], three of the authors proposed an approach to constructing such $p$-adic $L$-functions (Part I). Building on more recent results, including the first named author’s construction of Eisenstein measures and $p$-adic differential operators [Eischen, ‘A $p$-adic Eisenstein measure for unitary groups’, J. Reine Angew. Math.699 (2015), 111–142; ‘$p$-adic differential operators on automorphic forms on unitary groups’, Ann. Inst. Fourier (Grenoble)62(1) (2012), 177–243], Part II of the present paper provides the calculations of local $\unicode[STIX]{x1D701}$-integrals occurring in the Euler product (including at $p$). Part III of the present paper develops the formalism needed to pair Eisenstein measures with Hida families in the setting of the doubling method.
Given an elliptic curve E in Legendre form $y^2 = x(x - 1)(x - \lambda )$ over the fraction field of a Henselian ring R of mixed characteristic $(0, 2)$, we present an algorithm for determining a semistable model of E over R that depends only on the valuation of $\lambda $. We provide several examples along with an easy corollary concerning $2$-torsion.
We obtain a lower bound on the largest prime factor of the denominator of rational numbers in the Cantor set. This gives a stronger version of a recent result of Schleischitz [‘On intrinsic and extrinsic rational approximation to Cantor sets’, Ergodic Theory Dyn. Syst. to appear] obtained via a different argument.
We adapt a technique of Kisin to construct and study crystalline deformation rings of $G_{K}$ for a finite extension $K/\mathbb{Q}_{p}$. This is done by considering a moduli space of Breuil–Kisin modules, satisfying an additional Galois condition, over the unrestricted deformation ring. For $K$ unramified over $\mathbb{Q}_{p}$ and Hodge–Tate weights in $[0,p]$, we study the geometry of this space. As a consequence, we prove that, under a mild cyclotomic-freeness assumption, all crystalline representations of an unramified extension of $\mathbb{Q}_{p}$, with Hodge–Tate weights in $[0,p]$, are potentially diagonalizable.
We show that any smooth projective cubic hypersurface of dimension at least 29 over the rationals contains a rational line. A variation of our methods provides a similar result over p-adic fields. In both cases, we improve on previous results due to the second author and Wooley.
We include an appendix in which we highlight some slight modifications to a recent result of Papanikolopoulos and Siksek. It follows that the set of rational points on smooth projective cubic hypersurfaces of dimension at least 29 is generated via secant and tangent constructions from just a single point.
It is known that the Fourier–Stieltjes coefficients of a nonatomic coin-tossing measure may not vanish at infinity. However, we show that they could vanish at infinity along some integer subsequences, including the sequence ${\{b^{n}\}}_{n\geq 1}$ where $b$ is multiplicatively independent of 2 and the sequence given by the multiplicative semigroup generated by 3 and 5. The proof is based on elementary combinatorics and lower-bound estimates for linear forms in logarithms from transcendental number theory.
Motohashi established an explicit identity between the fourth moment of the Riemann zeta function weighted by some test function and a spectral cubic moment of automorphic $L$-functions. By an entirely different method, we prove a generalization of this formula to a fourth moment of Dirichlet $L$-functions modulo $q$ weighted by a non-archimedean test function. This establishes a new reciprocity formula. As an application, we obtain sharp upper bounds for the fourth moment twisted by the square of a Dirichlet polynomial of length $q^{1/4}$. An auxiliary result of independent interest is a sharp upper bound for a certain sixth moment for automorphic $L$-functions, which we also use to improve the best known subconvexity bounds for automorphic $L$-functions in the level aspect.
Let $G$ be an anisotropic semisimple group over a totally real number field $F$. Suppose that $G$ is compact at all but one infinite place $v_{0}$. In addition, suppose that $G_{v_{0}}$ is $\mathbb{R}$-almost simple, not split, and has a Cartan involution defined over $F$. If $Y$ is a congruence arithmetic manifold of non-positive curvature associated with $G$, we prove that there exists a sequence of Laplace eigenfunctions on $Y$ whose sup norms grow like a power of the eigenvalue.
In the mid 80’s Conner and Perlis showed that for cyclic number fields of prime degree p the isometry class of integral trace is completely determined by the discriminant. Here we generalize their result to tame cyclic number fields of arbitrary degree. Furthermore, for such fields, we give an explicit description of a Gram matrix of the integral trace in terms of the discriminant of the field.
We construct analogues of Rankin–Selberg integrals for Speh representations of the general linear group over a $p$-adic field. The integrals are in terms of the (extended) Shalika model and are expected to be the local counterparts of (suitably regularized) global integrals involving square-integrable automorphic forms and Eisenstein series on the general linear group over a global field. We relate the local integrals to the classical ones studied by Jacquet, Piatetski-Shapiro and Shalika. We also introduce a unitary structure for Speh representation on the Shalika model, as well as various other models including Zelevinsky’s degenerate Whittaker model.
In 1945–1946, C. L. Siegel proved that an $n$-dimensional lattice $\unicode[STIX]{x1D6EC}$ of determinant $\text{det}(\unicode[STIX]{x1D6EC})$ has at most $m^{n^{2}}$ different sublattices of determinant $m\cdot \text{det}(\unicode[STIX]{x1D6EC})$. In 1997, the exact number of the different sublattices of index $m$ was determined by Baake. We present a systematic treatment for counting the sublattices and derive a formula for the number of the sublattice classes under unimodular equivalence.
We completely describe the algebraic part of the rational cohomology of the Torelli groups of the manifolds $\#^{g}S^{n}\times S^{n}$ relative to a disc in a stable range, for $2n\geqslant 6$. Our calculation is also valid for $2n=2$ assuming that the rational cohomology groups of these Torelli groups are finite-dimensional in a stable range.
We discuss a truncated identity of Euler and present a combinatorial proof of it. We also derive two finite identities as corollaries. As an application, we establish two related $q$-congruences for sums of $q$-Catalan numbers, one of which has been proved by Tauraso [‘$q$-Analogs of some congruences involving Catalan numbers’, Adv. Appl. Math.48 (2012), 603–614] by a different method.
Newman showed that there exists a finite constant $\unicode[STIX]{x1D6EC}$ (the de Bruijn–Newman constant) such that the zeros of $H_{t}$ are all real precisely when $t\geqslant \unicode[STIX]{x1D6EC}$. The Riemann hypothesis is equivalent to the assertion $\unicode[STIX]{x1D6EC}\leqslant 0$, and Newman conjectured the complementary bound $\unicode[STIX]{x1D6EC}\geqslant 0$. In this paper, we establish Newman’s conjecture. The argument proceeds by assuming for contradiction that $\unicode[STIX]{x1D6EC}<0$ and then analyzing the dynamics of zeros of $H_{t}$ (building on the work of Csordas, Smith and Varga) to obtain increasingly strong control on the zeros of $H_{t}$ in the range $\unicode[STIX]{x1D6EC}<t\leqslant 0$, until one establishes that the zeros of $H_{0}$ are in local equilibrium, in the sense that they locally behave (on average) as if they were equally spaced in an arithmetic progression, with gaps staying close to the global average gap size. But this latter claim is inconsistent with the known results about the local distribution of zeros of the Riemann zeta function, such as the pair correlation estimates of Montgomery.
We study special cycles on a Shimura variety of orthogonal type over a totally real field of degree d associated with a quadratic form in $n+2$ variables whose signature is $(n,2)$ at e real places and $(n+2,0)$ at the remaining $d-e$ real places for $1\leq e <d$. Recently, these cycles were constructed by Kudla and Rosu–Yott, and they proved that the generating series of special cycles in the cohomology group is a Hilbert-Siegel modular form of half integral weight. We prove that, assuming the Beilinson–Bloch conjecture on the injectivity of the higher Abel–Jacobi map, the generating series of special cycles of codimension er in the Chow group is a Hilbert–Siegel modular form of genus r and weight $1+n/2$. Our result is a generalization of Kudla’s modularity conjecture, solved by Yuan–Zhang–Zhang unconditionally when $e=1$.
Following recent investigations of vanishing coefficients in infinite products, we show that such instances are very rare when the infinite product is among a family of theta-quotients of modulus five. We also prove that a general family of products of theta functions of modulus five can always be effectively 5-dissected.