To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce a notion of $q$-deformed rational numbers and $q$-deformed continued fractions. A $q$-deformed rational is encoded by a triangulation of a polygon and can be computed recursively. The recursive formula is analogous to the $q$-deformed Pascal identity for the Gaussian binomial coefficients, but the Pascal triangle is replaced by the Farey graph. The coefficients of the polynomials defining the $q$-rational count quiver subrepresentations of the maximal indecomposable representation of the graph dual to the triangulation. Several other properties, such as total positivity properties, $q$-deformation of the Farey graph, matrix presentations and $q$-continuants are given, as well as a relation to the Jones polynomial of rational knots.
Let $r,n>1$ be integers and $q$ be any prime power $q$ such that $r\mid q^{n}-1$. We say that the extension $\mathbb{F}_{q^{n}}/\mathbb{F}_{q}$ possesses the line property for $r$-primitive elements property if, for every $\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D703}\in \mathbb{F}_{q^{n}}^{\ast }$ such that $\mathbb{F}_{q^{n}}=\mathbb{F}_{q}(\unicode[STIX]{x1D703})$, there exists some $x\in \mathbb{F}_{q}$ such that $\unicode[STIX]{x1D6FC}(\unicode[STIX]{x1D703}+x)$ has multiplicative order $(q^{n}-1)/r$. We prove that, for sufficiently large prime powers $q$, $\mathbb{F}_{q^{n}}/\mathbb{F}_{q}$ possesses the line property for $r$-primitive elements. We also discuss the (weaker) translate property for extensions.
Let $f:X\rightarrow X$ be a quasi-finite endomorphism of an algebraic variety $X$ defined over a number field $K$ and fix an initial point $a\in X$. We consider a special case of the Dynamical Mordell–Lang Conjecture, where the subvariety $V$ contains only finitely many periodic points and does not contain any positive-dimensional periodic subvariety. We show that the set $\{n\in \mathbb{Z}_{{\geqslant}0}\mid f^{n}(a)\in V\}$ satisfies a strong gap principle.
We consider a deformation $E_{L,\unicode[STIX]{x1D6EC}}^{(m)}(it)$ of the Dedekind eta function depending on two $d$-dimensional simple lattices $(L,\unicode[STIX]{x1D6EC})$ and two parameters $(m,t)\in (0,\infty )$, initially proposed by Terry Gannon. We show that the minimisers of the lattice theta function are the maximisers of $E_{L,\unicode[STIX]{x1D6EC}}^{(m)}(it)$ in the space of lattices with fixed density. The proof is based on the study of a lattice generalisation of the logarithm, called the lattice logarithm, also defined by Terry Gannon. We also prove that the natural logarithm is characterised by a variational problem over a class of one-dimensional lattice logarithms.
In this paper we continue the study of automorphism groups of constant-length substitution shifts and also their topological factors. We show that, up to conjugacy, all roots of the identity map are letter-exchanging maps, and all other non-trivial automorphisms arise from twisted compressions of another constant-length substitution. We characterize the group of roots of the identity in both the measurable and topological setting. Finally, we show that any topological factor of a constant-length substitution shift is topologically conjugate to a constant-length substitution shift via a letter-to-letter code.
We consider a certain two-parameter family of automorphisms of the affine plane over a complete, locally compact non-Archimedean field. Each of these automorphisms admits a chaotic attractor on which it is topologically conjugate to a full two-sided shift map, and the attractor supports a unit Borel measure which describes the distribution of the forward orbit of Haar-almost all points in the basin of attraction. We also compute the Hausdorff dimension of the attractor, which is non-integral.
We show, under some natural restrictions, that some semigroup orbits of polynomials cannot contain too many elements of small multiplicative order modulo a large prime $p$, extending previous work of Shparlinski [‘Multiplicative orders in orbits of polynomials over finite fields’, Glasg. Math. J.60(2) (2018), 487–493].
Andrews [‘Binary and semi-Fibonacci partitions’, J. Ramanujan Soc. Math. Math. Sci.7(1) (2019), 1–6] recently proved a new identity between the cardinalities of the set of semi-Fibonacci partitions and the set of partitions into powers of 2 with all parts appearing an odd number of times. We extend the identity to the set of semi-$m$-Fibonacci partitions of $n$ and the set of partitions of $n$ into powers of $m$ in which all parts appear with multiplicity not divisible by $m$. We also give a new characterisation of semi-$m$-Fibonacci partitions and some congruences satisfied by the associated number sequence.
We introduce a generalization ${\rm{\pounds}}_d^{(\alpha)}(X)$ of the finite polylogarithms ${\rm{\pounds}}_d^{(0)}(X) = {{\rm{\pounds}}_d}(X) = \sum\nolimits_{k = 1}^{p - 1} {X^k}/{k^d}$, in characteristic p, which depends on a parameter α. The special case ${\rm{\pounds}}_1^{(\alpha)}(X)$ was previously investigated by the authors as the inverse, in an appropriate sense, of a parametrized generalization of the truncated exponential which is instrumental in a grading switching technique for nonassociative algebras. Here, we extend such generalization to ${\rm{\pounds}}_d^{(\alpha)}(X)$ in a natural manner and study some properties satisfied by those polynomials. In particular, we find how the polynomials ${\rm{\pounds}}_d^{(\alpha)}(X)$ are related to the powers of ${\rm{\pounds}}_1^{(\alpha)}(X)$ and derive some consequences.
Fix $d\geqslant 2$ and a field $k$ such that $\operatorname{char}k\nmid d$. Assume that $k$ contains the $d$th roots of $1$. Then the irreducible components of the curves over $k$ parameterizing preperiodic points of polynomials of the form $z^{d}+c$ are geometrically irreducible and have gonality tending to $\infty$. This implies the function field analogue of the strong uniform boundedness conjecture for preperiodic points of $z^{d}+c$. It also has consequences over number fields: it implies strong uniform boundedness for preperiodic points of bounded eventual period, which in turn reduces the full conjecture for preperiodic points to the conjecture for periodic points. Our proofs involve a novel argument specific to finite fields, in addition to more standard tools such as the Castelnuovo–Severi inequality.
Under sufficiently strong assumptions about the first prime in an arithmetic progression, we prove that the number of Carmichael numbers up to $X$ is $\gg X^{1-R}$, where $R=(2+o(1))\log \log \log \log X/\text{log}\log \log X$. This is close to Pomerance’s conjectured density of $X^{1-R}$ with $R=(1+o(1))\log \log \log X/\text{log}\log X$.
A system of quadratic forms is associated to every generalised quadratic form over a division algebra with involution of the first kind in characteristic two. It is shown that this system determines the isotropy behaviour and the isometry class of generalised quadratic forms. An application of this construction to the Witt index of generalised quadratic forms is also given.
For an irrational number $x\in [0,1)$, let $x=[a_{1}(x),a_{2}(x),\ldots ]$ be its continued fraction expansion with partial quotients $\{a_{n}(x):n\geq 1\}$. Given $\unicode[STIX]{x1D6E9}\in \mathbb{N}$, for $n\geq 1$, the $n$th longest block function of $x$ with respect to $\unicode[STIX]{x1D6E9}$ is defined by $L_{n}(x,\unicode[STIX]{x1D6E9})=\max \{k\geq 1:a_{j+1}(x)=\cdots =a_{j+k}(x)=\unicode[STIX]{x1D6E9}~\text{for some}~j~\text{with}~0\leq j\leq n-k\}$, which represents the length of the longest consecutive sequence whose elements are all $\unicode[STIX]{x1D6E9}$ from the first $n$ partial quotients of $x$. We consider the growth rate of $L_{n}(x,\unicode[STIX]{x1D6E9})$ as $n\rightarrow \infty$ and calculate the Hausdorff dimensions of the level sets and exceptional sets arising from the longest block function.
In this note we use some $q$-congruences proved by the method of ‘creative microscoping’ to prove two conjectures on supercongruences involving central binomial coefficients. In particular, we confirm the $m=5$ case of Conjecture 1.1 of Guo [‘Some generalizations of a supercongruence of Van Hamme’, Integral Transforms Spec. Funct.28 (2017), 888–899].
We establish various new results on a problem proposed by Mahler [Some suggestions for further research. Bull. Aust. Math. Soc.29 (1984), 101–108] concerning rational approximation to fractal sets by rational numbers inside and outside the set in question. Some of them provide a natural continuation and improvement of recent results of Broderick, Fishman and Reich, and Fishman and Simmons. A key feature is that many of our new results apply to more general, multi-dimensional fractal sets and require only mild assumptions on the iterated function system. Moreover, we provide a non-trivial lower bound for the distance of a rational number $p/q$ outside the Cantor middle-third set $C$ to the set $C$, in terms of the denominator $q$. We further discuss patterns of rational numbers in fractal sets. We highlight two of them: firstly, an upper bound for the number of rational (algebraic) numbers in a fractal set up to a given height (and degree) for a wide class of fractal sets; and secondly, we find properties of the denominator structure of rational points in ‘missing-digit’ Cantor sets, generalizing claims of Nagy and Bloshchitsyn.
The generalized Soulé character was introduced by H. Nakamura and Z. Wojtkowiak and is a generalization of Soulé’s cyclotomic character. In this paper, we prove that certain linear sums of generalized Soulé characters essentially coincide with the image of generalized Beilinson elements in K-groups under Soulé’s higher regulator maps. This result generalizes Huber–Wildeshaus’ theorem, which is a cyclotomic field case of our results, to an arbitrary number fields.
Let $K=\mathbb{Q}(\unicode[STIX]{x1D714})$ with $\unicode[STIX]{x1D714}$ the root of a degree $n$ monic irreducible polynomial $f\in \mathbb{Z}[X]$. We show that the degree $n$ polynomial $N(\sum _{i=1}^{n-k}x_{i}\unicode[STIX]{x1D714}^{i-1})$ in $n-k$ variables takes the expected asymptotic number of prime values if $n\geqslant 4k$. In the special case $K=\mathbb{Q}(\sqrt[n]{\unicode[STIX]{x1D703}})$, we show that $N(\sum _{i=1}^{n-k}x_{i}\sqrt[n]{\unicode[STIX]{x1D703}^{i-1}})$ takes infinitely many prime values, provided $n\geqslant 22k/7$.
Our proof relies on using suitable ‘Type I’ and ‘Type II’ estimates in Harman’s sieve, which are established in a similar overall manner to the previous work of Friedlander and Iwaniec on prime values of $X^{2}+Y^{4}$ and of Heath-Brown on $X^{3}+2Y^{3}$. Our proof ultimately relies on employing explicit elementary estimates from the geometry of numbers and algebraic geometry to control the number of highly skewed lattices appearing in our final estimates.
A well-known conjecture, often attributed to Serre, asserts that any motive over any number field has infinitely many ordinary reductions (in the sense that the Newton polygon coincides with the Hodge polygon). In the case of Hilbert modular cuspforms $f$ of parallel weight $(2,\ldots ,2)$, we show how to produce more ordinary primes by using the Sato–Tate equidistribution and combining it with the Galois theory of the Hecke field. Under the assumption of stronger forms of Sato–Tate equidistribution, we get stronger (but conditional) results. In the case of higher weights, we formulate the ordinariness conjecture for submotives of the intersection cohomology of proper algebraic varieties with motivic coefficients, and verify it for the motives whose $\ell$-adic Galois realisations are abelian on a finite-index subgroup. We get some results for Hilbert cuspforms of weight $(3,\ldots ,3)$, weaker than those for $(2,\ldots ,2)$.
In this paper, we investigate $\unicode[STIX]{x1D70B}(m,n)$, the number of partitions of the bipartite number$(m,n)$ into steadily decreasing parts, introduced by Carlitz [‘A problem in partitions’, Duke Math. J.30 (1963), 203–213]. We give a relation between $\unicode[STIX]{x1D70B}(m,n)$ and the crank statistic $M(m,n)$ for integer partitions. Using this relation, we establish some uniform asymptotic formulas for $\unicode[STIX]{x1D70B}(m,n)$.
We present a complete characterisation of the radial asymptotics of degree-one Mahler functions as $z$ approaches roots of unity of degree $k^{n}$, where $k$ is the base of the Mahler function, as well as some applications concerning transcendence and algebraic independence. For example, we show that the generating function of the Thue–Morse sequence and any Mahler function (to the same base) which has a nonzero Mahler eigenvalue are algebraically independent over $\mathbb{C}(z)$. Finally, we discuss asymptotic bounds towards generic points on the unit circle.