We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present conditions guaranteeing the existence of non-trivial unstable sets for compact invariant sets in semiflows with certain compactness conditions, and then establish the existence of such unstable sets for an unstable equilibrium or a minimal compact invariant set, not containing equilibria, in an essentially strongly order-preserving semiflow. By appealing to the limit-set dichotomy for essentially strongly order-preserving semiflows, we prove the existence of an orbit connection from an equilibrium to a minimal compact invariant set, not consisting of equilibria. As an application, we establish a new generic convergence principle for essentially strongly order-preserving semiflows with certain compactness conditions.
A class of first-order impulsive functional differential equations with forcing terms is considered. It is shown that, under certain assumptions, there exist positive T-periodic solutions, and under some other assumptions, there exists no positive T-periodic solution. Applications and examples are given to illustrate the main results.
In this work, we shall be concerned with the following forced Rayleigh type equation: Under certain assumptions, some criteria for guaranteeing the existence, uniqueness and asymptotic stability (in the Lyapunov sense) of periodic solutions of this equation are presented by applying the Manásevich–Mawhin continuation theorem, Floquet theory, Lyapunov stability theory and some analysis techniques. Moreover, an example is provided to demonstrate the applications of our results.
In this note we study the zeros of solutions of differential equations of the form u′′+pu=0. A criterion for oscillation is found, and some sharper forms of the Sturm comparison theorem are given.
Motivated by a problem in neural encoding, we introduce an adaptive (or real-time) parameter estimation algorithm driven by a counting process. Despite the long history of adaptive algorithms, this kind of algorithm is relatively new. We develop a finite-time averaging analysis which is nonstandard partly because of the point process setting and partly because we have sought to avoid requiring mixing conditions. This is significant since mixing conditions often place restrictive history-dependent requirements on algorithm convergence.
The Hopf bifurcation and homoclinic bifurcation of the quintic Hamiltonian system is analyzed under quintic perturbations by using unfolding theory in this paper. We show that a quintic system can have at least 29 limit cycles.
In this paper we extend a theorem of Mallet-Paret and Sell for the existence of an inertial manifold for a scalar-valued reaction diffusion equation to new physical domains ωn ⊂ Rn, n = 2,3. For their result the Principle of Spatial Averaging (PSA), which certain domains may possess, plays a key role for the existence of an inertial manifold. Instead of the PSA, we define a weaker PSA and prove that the domains φn with appropriate boundary conditions for the Laplace operator, δ, satisfy a weaker PSA. This weaker PSA is enough to ensure the existence of an inertial manifold for a specific class of scalar-valued reaction diffusion equations on each domain ωn under suitable conditions.
We will prove the Theorem of Hartman-Grobman in a very general form. It states the topological equivalence of the flow of a nonlinear non-autonomous differential or difference equation with critical component to the flow of a partially linearized equation. The critical spectrum has not necessearily to be contained in the imaginary axis or the unit circle respectively. Further on we will employ the socalled calculus on measure chains within dynamical systems theory. Within this calculus the usual one dimensional time scales can be replaced by measure chains which are essentially closed subsets of R. The paper can be understood without knowledge of this calculus.
So our main theorem will be valid even for equations defined on very strange time scales such as sequences of closed intervals. This is especially interesting for applications within the theory of differential-difference equations or within numerical analysis of qualitative phenomena of dynamical systems.
In this paper sufficient conditions have been obtained for non-oscillation of non-homogeneous canonical linear differential equations of third order. Some of these results have been extended to non-linear equations.
Some oscillation criteria for solutions of a general second order ordinary superlinear differential equation with alternating coefficients are given. The results generalize and complement some existing results in the literature.
Consider the nth-order neutral differential equation where n ≥ 1, δ = ±1, I, K are initial segments of natural numbers, pi, τi, σk ∈ R and qk ≥ 0 for i ∈ I and k ∈ K. Then a necessary and sufficient condition for the oscillation of all solutions of (E) is that its characteristic equation has no real roots. The method of proof has the advantage that it results in easily verifiable sufficient conditions (in terms of the coefficients and the arguments only) for the oscillation of all solutionso of Equation (E).
Let R(z, w) be a rational function of w with meromorphic coefficients. It is shown that if the Schwarzian equation possesses an admissible solution, then , where αj, are distinct complex constants. In particular, when R(z, w) is independent of z, it is shown that if (*) possesses an admissible solution w(z), then by some Möbius transformation u = (aw + b) / (cw + d) (ad – bc ≠ 0), the equation can be reduced to one of the following forms: where τj (j = 1, … 4) are distinct constants, and σj (j = 1, … 4) are constants, not necessarily distinct.
New oscillation criteria are given for second order nonlinear ordinary differential equations with alternating coefficients. The results involve a condition obtained by Kamenev for linear differential equations. The obtained criterion for superlinear differential equations is a complement of the work established by Kwong and Wong, and Philos, for sublinear differential equations and by Yan for linear differential equations.
A number of sufficient conditions for stability or strong stability, as used in the context of Hamiltonian systems, are found for the differential equation where the continuous function f(t) is periodic ω in t, D = d/dt and p(s), q(s) are real monic polynomials having special properties which allow the differential equation to be transformed into a canonical system of k second order equations.
We consider the second order linear differential equation
where p and q are real-valued members of with p(t)>0 for t ∈ [α, ∞). In particular we consider the following three questions dealing with the asymptotic behavior of solutions of (1.1).
New oscillation criteria are established for second order sublinear ordinary differential equations with alternating coefficients. These criteria are obtained by using an integral averaging technique and can be applied in some special cases in which other classical oscillation results are no applicable.
It is shown that that an ordinary linear differential equation may possess a holomorphic solution in a neighbourhood of an irregular singular point even though the usual linearly independent solutions corresponding to the two roots of the indicial equation both have zero radius of convergence.
We consider the second order linear differential equation
where p and q are real-valued and p(t) > 0 for all t ≥ T. Our interest here is the oscillatory nature of solutions of (1.1). More particularly we consider the following questions, (I), (II) and (III).