To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In a previous paper [P. Mardešić and M. Resman. Analytic moduli for parabolic Dulac germs. Russian Math. Surveys, to appear, 2021, arXiv:1910.06129v2.] we determined analytic invariants, that is, moduli of analytic classification, for parabolic generalized Dulac germs. This class contains parabolic Dulac (almost regular) germs, which appear as first-return maps of hyperbolic polycycles. Here we solve the problem of realization of these moduli.
By developing a Green's function representation for the solution of the boundary value problem we study existence, uniqueness, and qualitative properties (e.g., positivity or monotonicity) of solutions to these problems. We apply our methods to fractional order differential equations. We also demonstrate an application of our methodology both to convolution equations with nonlocal boundary conditions as well as those with a nonlocal term in the convolution equation itself.
Quasiperiodic media is a class of almost periodic media which is generated from periodic media through a ‘cut and project’ procedure. Quasiperiodic media displays some extraordinary optical, electronic and conductivity properties which call for the development of methods to analyse their microstructures and effective behaviour. In this paper, we develop the method of Bloch wave homogenisation for quasiperiodic media. Bloch waves are typically defined through a direct integral decomposition of periodic operators. A suitable direct integral decomposition is not available for almost periodic operators. To remedy this, we lift a quasiperiodic operator to a degenerate periodic operator in higher dimensions. Approximate Bloch waves are obtained for a regularised version of the degenerate operator. Homogenised coefficients for quasiperiodic media are obtained from the first Bloch eigenvalue of the regularised operator in the limit of regularisation parameter going to zero. A notion of quasiperiodic Bloch transform is defined and employed to obtain homogenisation limit for an equation with highly oscillating quasiperiodic coefficients.
This work investigates the existence and bifurcation structure of multi-pulse steady-state solutions to bistable lattice dynamical systems. Such solutions are characterized by multiple compact disconnected regions where the solution resembles one of the bistable states and resembles another trivial bistable state outside of these compact sets. It is shown that the bifurcation curves of these multi-pulse solutions lie along closed and bounded curves (isolas), even when single-pulse solutions lie along unbounded curves. These results are applied to a discrete Nagumo differential equation and we show that the hypotheses of this work can be confirmed analytically near the anti-continuum limit. Results are demonstrated with a number of numerical investigations.
In aquatic microbial systems, high-magnitude variations in abundance, such as sudden blooms alternating with comparatively long periods of very low abundance (“apparent disappearance”), are relatively common. We suggest that in order for this to occur, such variations in abundance in microbial systems and, in particular, the apparent disappearance of species do not require seasonal or periodic forcing of any kind or external factors of any other nature. Instead, such variations can be caused by internal factors and, in particular, by bacteria–phage interaction. Specifically, we suggest that the variations in abundance and the apparent disappearance phenomenon can be a result of phage infection and the lysis of infected bacteria. To illustrate this idea, we consider a reasonably simple mathematical model of bacteria–phage interaction based on the model suggested by Beretta and Kuang, which assumes neither periodic forcing nor action of other external factors. The model admits a loss of stability via Andronov–Hopf bifurcation and exhibits dynamics which explains the phenomenon. These properties of the model are especially distinctive for spatially nonhomogeneous biosystems as well as biosystems with some sort of cooperation or community effects.
In 1958 started the study of the families of algebraic limit cycles in the class of planar quadratic polynomial differential systems. In the present we known one family of algebraic limit cycles of degree 2 and four families of algebraic limit cycles of degree 4, and that there are no limit cycles of degree 3. All the families of algebraic limit cycles of degree 2 and 4 are known, this is not the case for the families of degree higher than 4. We also know that there exist two families of algebraic limit cycles of degree 5 and one family of degree 6, but we do not know if these families are all the families of degree 5 and 6. Until today it is an open problem to know if there are algebraic limit cycles of degree higher than 6 inside the class of quadratic polynomial differential systems. Here we investigate the birth and death of all the known families of algebraic limit cycles of quadratic polynomial differential systems.
where $A$ is a $d\times d$ constant matrix of elliptic type, $\unicode[STIX]{x1D716}g(t,\unicode[STIX]{x1D716})$ is a small perturbation with $\unicode[STIX]{x1D716}$ as a small parameter, $h(x,t,\unicode[STIX]{x1D716})=O(x^{2})$ as $x\rightarrow 0$, and $P,g$ and $h$ are all analytic quasi-periodic in $t$ with basic frequencies $\unicode[STIX]{x1D714}=(1,\unicode[STIX]{x1D6FC})$, where $\unicode[STIX]{x1D6FC}$ is irrational. It is proved that for most sufficiently small $\unicode[STIX]{x1D716}$, the system is reducible to the following form:
where $h_{\ast }(x,t,\unicode[STIX]{x1D716})=O(x^{2})~(x\rightarrow 0)$ is a high-order term. Therefore, the system has a quasi-periodic solution with basic frequencies $\unicode[STIX]{x1D714}=(1,\unicode[STIX]{x1D6FC})$, such that it goes to zero when $\unicode[STIX]{x1D716}$ does.
We present the complete classification of irreducible invariant algebraic curves of quadratic Liénard differential equations. We prove that these equations have irreducible invariant algebraic curves of unbounded degrees, in contrast with what is wrongly claimed in the literature. In addition, we classify all the quadratic Liénard differential equations that admit a Liouvillian first integral.
Taking into account the effects of patch structure and nonlinear density-dependent mortality terms, we explore a class of almost periodic Nicholson’s blowflies model in this paper. Employing the Lyapunov function method and differential inequality technique, some novel assertions are developed to guarantee the existence and exponential stability of positive almost periodic solutions for the addressed model, which generalize and refine the corresponding results in some recently published literatures. Particularly, an example and its numerical simulations are arranged to support the proposed approach.
We study the number of limit cycles bifurcating from the origin of a Hamiltonian system of degree 4. We prove, using the averaging theory of order 7, that there are quartic polynomial systems close these Hamiltonian systems having 3 limit cycles.
We establish new oscillation criteria for nonlinear differential equations of second order. The results here make some improvements of oscillation criteria of Butler, Erbe, and Mingarelli [2], Wong [8, 9], and Philos and Purnaras [6].
This paper introduces an algebro-geometric setting for the space of bifurcation functions involved in the local Hilbert’s 16th problem on a period annulus. Each possible bifurcation function is in one-to-one correspondence with a point in the exceptional divisor E of the canonical blow-up BI ℂn of the Bautin ideal I. In this setting, the notion of essential perturbation, first proposed by Iliev, is defined via irreducible components of the Nash space of arcs Arc(BI ℂn, E). The example of planar quadratic vector fields in the Kapteyn normal form is further discussed.
In this work we are concerned with the existence of fixed points for multivalued maps defined on Banach spaces. Using the Banach spaces scale concept, we establish the existence of a fixed point of a multivalued map in a vector subspace where the map is only locally Lipschitz continuous. We apply our results to the existence of mild solutions and asymptotically almost periodic solutions of an abstract Cauchy problem governed by a first-order differential inclusion. Our results are obtained by using fixed point theory for the measure of noncompactness.
As a consequence of the main result of this paper efficient conditions guaranteeing the existence of a T −periodic solution to the second-order differential equation
are established. Here, h ∈ L(ℝ/Tℤ) is a piecewise-constant sign-changing function and the non-linear term presents a weak singularity at 0 (i.e. λ ∈ (0, 1)).
We study the existence and uniqueness of ${\mathcal{S}}$-asymptotically periodic solutions for a general class ofabstract differential equations with state-dependent delay. Some examplesrelated to problems arising in population dynamics are presented.
Using the Leray–Schauder degree, we study the existence of solutions for the following periodic differential equation with relativistic acceleration and singular nonlinearity:
where μ > 1 and the weight h: [0, T] → ℝ is a continuous sign-changing function. There are no a priori estimates on the set of positive solutions (a condition used in general to apply the Leray–Schauder degree), and we prove that no solution of the equation appears on the boundary of an unbounded open set during the deformation to an autonomous problem.
We provide sufficient conditions for the non-existence, existence and uniqueness of limit cycles surrounding a focus of a quadratic polynomial differential system in the plane.
Semi-analytical solutions are derived for the Brusselator system in one- and two-dimensional domains. The Galerkin method is processed to approximate the governing partial differential equations via a system of ordinary differential equations. Both steady-state concentrations and transient solutions are obtained. Semi-analytical results for the stability of the model are presented for the identified critical parameter value at which a Hopf bifurcation occurs. The impact of the diffusion coefficients on the system is also considered. The results show that diffusion acts to stabilize the systems better than the equivalent nondiffusive systems with the increasing critical value of the Hopf bifurcation. Comparison between the semi-analytical and numerical solutions shows an excellent agreement with the steady-state transient solutions and the parameter values at which the Hopf bifurcations occur. Examples of stable and unstable limit cycles are given, and Hopf bifurcation points are shown to confirm the results previously calculated in the Hopf bifurcation map. The usefulness and accuracy of the semi-analytical results are confirmed by comparison with the numerical solutions of partial differential equations.