We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In aquatic microbial systems, high-magnitude variations in abundance, such as sudden blooms alternating with comparatively long periods of very low abundance (“apparent disappearance”), are relatively common. We suggest that in order for this to occur, such variations in abundance in microbial systems and, in particular, the apparent disappearance of species do not require seasonal or periodic forcing of any kind or external factors of any other nature. Instead, such variations can be caused by internal factors and, in particular, by bacteria–phage interaction. Specifically, we suggest that the variations in abundance and the apparent disappearance phenomenon can be a result of phage infection and the lysis of infected bacteria. To illustrate this idea, we consider a reasonably simple mathematical model of bacteria–phage interaction based on the model suggested by Beretta and Kuang, which assumes neither periodic forcing nor action of other external factors. The model admits a loss of stability via Andronov–Hopf bifurcation and exhibits dynamics which explains the phenomenon. These properties of the model are especially distinctive for spatially nonhomogeneous biosystems as well as biosystems with some sort of cooperation or community effects.
In 1958 started the study of the families of algebraic limit cycles in the class of planar quadratic polynomial differential systems. In the present we known one family of algebraic limit cycles of degree 2 and four families of algebraic limit cycles of degree 4, and that there are no limit cycles of degree 3. All the families of algebraic limit cycles of degree 2 and 4 are known, this is not the case for the families of degree higher than 4. We also know that there exist two families of algebraic limit cycles of degree 5 and one family of degree 6, but we do not know if these families are all the families of degree 5 and 6. Until today it is an open problem to know if there are algebraic limit cycles of degree higher than 6 inside the class of quadratic polynomial differential systems. Here we investigate the birth and death of all the known families of algebraic limit cycles of quadratic polynomial differential systems.
where $A$ is a $d\times d$ constant matrix of elliptic type, $\unicode[STIX]{x1D716}g(t,\unicode[STIX]{x1D716})$ is a small perturbation with $\unicode[STIX]{x1D716}$ as a small parameter, $h(x,t,\unicode[STIX]{x1D716})=O(x^{2})$ as $x\rightarrow 0$, and $P,g$ and $h$ are all analytic quasi-periodic in $t$ with basic frequencies $\unicode[STIX]{x1D714}=(1,\unicode[STIX]{x1D6FC})$, where $\unicode[STIX]{x1D6FC}$ is irrational. It is proved that for most sufficiently small $\unicode[STIX]{x1D716}$, the system is reducible to the following form:
where $h_{\ast }(x,t,\unicode[STIX]{x1D716})=O(x^{2})~(x\rightarrow 0)$ is a high-order term. Therefore, the system has a quasi-periodic solution with basic frequencies $\unicode[STIX]{x1D714}=(1,\unicode[STIX]{x1D6FC})$, such that it goes to zero when $\unicode[STIX]{x1D716}$ does.
We present the complete classification of irreducible invariant algebraic curves of quadratic Liénard differential equations. We prove that these equations have irreducible invariant algebraic curves of unbounded degrees, in contrast with what is wrongly claimed in the literature. In addition, we classify all the quadratic Liénard differential equations that admit a Liouvillian first integral.
Taking into account the effects of patch structure and nonlinear density-dependent mortality terms, we explore a class of almost periodic Nicholson’s blowflies model in this paper. Employing the Lyapunov function method and differential inequality technique, some novel assertions are developed to guarantee the existence and exponential stability of positive almost periodic solutions for the addressed model, which generalize and refine the corresponding results in some recently published literatures. Particularly, an example and its numerical simulations are arranged to support the proposed approach.
We study the number of limit cycles bifurcating from the origin of a Hamiltonian system of degree 4. We prove, using the averaging theory of order 7, that there are quartic polynomial systems close these Hamiltonian systems having 3 limit cycles.
We establish new oscillation criteria for nonlinear differential equations of second order. The results here make some improvements of oscillation criteria of Butler, Erbe, and Mingarelli [2], Wong [8, 9], and Philos and Purnaras [6].
This paper introduces an algebro-geometric setting for the space of bifurcation functions involved in the local Hilbert’s 16th problem on a period annulus. Each possible bifurcation function is in one-to-one correspondence with a point in the exceptional divisor E of the canonical blow-up BI ℂn of the Bautin ideal I. In this setting, the notion of essential perturbation, first proposed by Iliev, is defined via irreducible components of the Nash space of arcs Arc(BI ℂn, E). The example of planar quadratic vector fields in the Kapteyn normal form is further discussed.
In this work we are concerned with the existence of fixed points for multivalued maps defined on Banach spaces. Using the Banach spaces scale concept, we establish the existence of a fixed point of a multivalued map in a vector subspace where the map is only locally Lipschitz continuous. We apply our results to the existence of mild solutions and asymptotically almost periodic solutions of an abstract Cauchy problem governed by a first-order differential inclusion. Our results are obtained by using fixed point theory for the measure of noncompactness.
As a consequence of the main result of this paper efficient conditions guaranteeing the existence of a T −periodic solution to the second-order differential equation
are established. Here, h ∈ L(ℝ/Tℤ) is a piecewise-constant sign-changing function and the non-linear term presents a weak singularity at 0 (i.e. λ ∈ (0, 1)).
We study the existence and uniqueness of ${\mathcal{S}}$-asymptotically periodic solutions for a general class of
abstract differential equations with state-dependent delay. Some examples
related to problems arising in population dynamics are presented.
Using the Leray–Schauder degree, we study the existence of solutions for the following periodic differential equation with relativistic acceleration and singular nonlinearity:
where μ > 1 and the weight h: [0, T] → ℝ is a continuous sign-changing function. There are no a priori estimates on the set of positive solutions (a condition used in general to apply the Leray–Schauder degree), and we prove that no solution of the equation appears on the boundary of an unbounded open set during the deformation to an autonomous problem.
We provide sufficient conditions for the non-existence, existence and uniqueness of limit cycles surrounding a focus of a quadratic polynomial differential system in the plane.
Semi-analytical solutions are derived for the Brusselator system in one- and two-dimensional domains. The Galerkin method is processed to approximate the governing partial differential equations via a system of ordinary differential equations. Both steady-state concentrations and transient solutions are obtained. Semi-analytical results for the stability of the model are presented for the identified critical parameter value at which a Hopf bifurcation occurs. The impact of the diffusion coefficients on the system is also considered. The results show that diffusion acts to stabilize the systems better than the equivalent nondiffusive systems with the increasing critical value of the Hopf bifurcation. Comparison between the semi-analytical and numerical solutions shows an excellent agreement with the steady-state transient solutions and the parameter values at which the Hopf bifurcations occur. Examples of stable and unstable limit cycles are given, and Hopf bifurcation points are shown to confirm the results previously calculated in the Hopf bifurcation map. The usefulness and accuracy of the semi-analytical results are confirmed by comparison with the numerical solutions of partial differential equations.
A nonlinear mathematical model for innovation diffusion is proposed. The system of ordinary differential equations incorporates variable external influences (the cumulative density of marketing efforts), variable internal influences (the cumulative density of word of mouth) and a logistically growing human population (the variable potential consumers). The change in population density is due to various demographic processes such as intrinsic growth rate, emigration, death rate etc. Thus the problem involves two dynamic variables viz. a non-adopter population density and an adopter population density. The model is analysed qualitatively using the stability theory of differential equations, with the help of the corresponding characteristic equation of the system. The interior equilibrium point can be stable for all time delays to a critical value, beyond which the system becomes unstable and a Hopf bifurcation occurs at a second critical value. Employing normal form theory and a centre manifold theorem applicable to functional differential equations, we derive some explicit formulas determining the stability, the direction and other properties of the bifurcating periodic solutions. Our numerical simulations show that the system behaviour can become extremely complicated as the time delay increases, with a stable interior equilibrium point leading to a limit cycle with one local maximum and minimum per cycle (Hopf bifurcation), then limit cycles with more local maxima and minima per cycle, and finally chaotic solutions.
We consider boundary-value problems for differential equations of second order containing a Brownian motion (random perturbation) and a small parameter and prove a special existence and uniqueness theorem for random solutions. We study the asymptotic behaviour of these solutions as the small parameter goes to zero and show the stochastic averaging theorem for such equations. We find the explicit limits for the solutions as the small parameter goes to zero.
We study a novel class of numerical integrators, the adapted nested force-gradient schemes, used within the molecular dynamics step of the Hybrid Monte Carlo (HMC) algorithm. We test these methods in the Schwinger model on the lattice, a well known benchmark problem. We derive the analytical basis of nested force-gradient type methods and demonstrate the advantage of the proposed approach, namely reduced computational costs compared with other numerical integration schemes in HMC.
This paper analyses the pseudo almost periodicity of the impulsive neoclassical growth model. We investigate the existence, uniqueness and exponential stability of the pseudo almost periodic solution. Moreover, an example is given to illustrate the significance of the main findings.