To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
with positive parameters $D_u,D_w,D_z,\xi _u,\xi _w,\delta _z,\rho$, $\alpha _u,\alpha _w,\mu _u,\beta$. When posed under no-flux boundary conditions in a smoothly bounded domain $\Omega \subset {\mathbb {R}}^{2}$, and along with initial conditions involving suitably regular data, the global existence of classical solution to this system was asserted in Tao and Winkler (2020, J. Differ. Equ. 268, 4973–4997). Based on the suitable quasi-Lyapunov functional, it is shown that when the virus replication rate $\beta <1$, the global classical solution $(u,v,w,z)$ is uniformly bounded and exponentially stabilizes to the constant equilibrium $(1, 0, 0, 0)$ in the topology $(L^{\infty }(\Omega ))^{4}$ as $t\rightarrow \infty$.
We study a variant of the mean curvature flow for closed, convex hypersurfaces where the normal velocity is a non-homogeneous function of the principal curvatures. We show that if the initial hypersurface satisfies a certain pinching condition, then this is preserved and the flow converges to a sphere under rescaling.
We prove the existence of a solution for a class of activator–inhibitor system of type $- \Delta u +u = f(u) -v$, $-\Delta v+ v=u$ in $\mathbb{R}^{N}$. The function f is a general nonlinearity which can grow polynomially in dimension $N\geq 3$ or exponentiallly if $N=2$. We are able to treat f when it has critical growth corresponding to the Sobolev space we work with. We transform the system into an equation with a nonlocal term. We find a critical point of the corresponding energy functional defined in the space of functions with norm endowed by a scalar product that takes into account such nonlocal term. For that matter, and due to the lack of compactness, we deal with weak convergent minimizing sequences and sequences of Lagrange multipliers of an action minima problem.
In this paper, we prove several results on the exponential decay in $L^{2}$ norm of the KdV equation on the real line with localized dampings. First, for the linear KdV equation, the exponential decay holds if and only if the averages of the damping coefficient on all intervals of a fixed length have a positive lower bound. Moreover, under the same damping condition, the exponential decay holds for the (nonlinear) KdV equation with small initial data. Finally, with the aid of certain properties of propagation of regularity in Bourgain spaces for solutions of the associated linear system and the unique continuation property, the exponential decay for the KdV equation with large data holds if the damping coefficient has a positive lower bound on $E$, where $E$ is equidistributed over the real line and the complement $E^{c}$ has a finite Lebesgue measure.
\[ \begin{cases} \epsilon^{2}\mbox{div}(a(x)\nabla u(x))+f(x,u)=0 & \text{ in }\Omega,\\ \frac{\partial u}{\partial \nu}=0 & \text{ on }\partial \Omega,\\ \end{cases} \]
where $\Omega$ is a smooth and bounded domain in general dimensional space $\mathbb {R}^{N}$, $\epsilon >0$ is a small parameter and function $a$ is positive. We respectively obtain the locations of interior transition layers of the solutions of the above transition problems that are $L^{1}$-local minimizer and global minimizer of the associated energy functional.
In this study, we consider the nonclassical diffusion equations with time-dependent memory kernels
\begin{equation*} u_{t} - \Delta u_t - \Delta u - \int_0^\infty k^{\prime}_{t}(s) \Delta u(t-s) ds + f( u) = g \end{equation*}
on a bounded domain $\Omega \subset \mathbb{R}^N,\, N\geq 3$. Firstly, we study the existence and uniqueness of weak solutions and then, we investigate the existence of the time-dependent global attractors $\mathcal{A}=\{A_t\}_{t\in\mathbb{R}}$ in $H_0^1(\Omega)\times L^2_{\mu_t}(\mathbb{R}^+,H_0^1(\Omega))$. Finally, we prove that the asymptotic dynamics of our problem, when $k_t$ approaches a multiple $m\delta_0$ of the Dirac mass at zero as $t\to \infty$, is close to the one of its formal limit
\begin{equation*}u_{t} - \Delta u_{t} - (1+m)\Delta u + f( u) = g. \end{equation*}
The main novelty of our results is that no restriction on the upper growth of the nonlinearity is imposed and the memory kernel $k_t(\!\cdot\!)$ depends on time, which allows for instance to describe the dynamics of aging materials.
We consider the following class of quasilinear Schrödinger equations proposed in plasma physics and nonlinear optics $-\Delta u+V(x)u+\frac {\kappa }{2}[\Delta (u^{2})]u=h(u)$ in the whole two-dimensional Euclidean space. We establish the existence and qualitative properties of standing wave solutions for a broader class of nonlinear terms $h(s)$ with the critical exponential growth. We apply the dual approach to obtain solutions in the usual Sobolev space $H^{1}(\mathbb {R}^{2})$ when the parameter $\kappa >0$ is sufficiently small. Minimax techniques, Trudinger–Moser inequality and the Nash–Moser iteration method play an essential role in establishing our results.
We study the optimal investment strategy to minimize the probability of lifetime ruin under a general mortality hazard rate. We explore the error between the minimum probability of lifetime ruin and the achieved probability of lifetime ruin if one follows a simple investment strategy inspired by earlier work in this area. We also include numerical examples to illustrate the estimation. We show that the nearly optimal probability of lifetime ruin under the simplified investment strategy is quite close to the original minimum probability of lifetime ruin under reasonable parameter values.
We investigate the equilibrium configurations of closed planar elastic curves of fixed length, whose stiffness, also known as the bending rigidity, depends on an additional density variable. The underlying variational model relies on the minimisation of a bending energy with respect to shape and density and can be considered as a one-dimensional analogue of the Canham–Helfrich model for heterogeneous biological membranes. We present a generalised Euler–Bernoulli elastica functional featuring a density-dependent stiffness coefficient. In order to treat the inherent nonconvexity of the problem, we introduce an additional length scale in the model by means of a density gradient term. We derive the system of Euler–Lagrange equations and study the bifurcation structure of solutions with respect to the model parameters. Both analytical and numerical results are presented.
In this paper, we discuss the solvability of the p-k-Hessian inequality $\sigma _{k}^{\frac 1k} ( \lambda ( D_{i} (|Du|^{p-2}$$ D_{j}u ) ) ) \geq f(u)$ on the entire space $\mathbb {R}^{n}$ and provide a necessary and sufficient condition, which can be regarded as a generalized Keller–Osserman condition. Furthermore, we obtain the optimal regularity of solution.
We consider the $\mathbb {T}^{4}$ cubic nonlinear Schrödinger equation (NLS), which is energy-critical. We study the unconditional uniqueness of solutions to the NLS via the cubic Gross–Pitaevskii hierarchy, an uncommon method for NLS analysis which is being explored [24, 35] and does not require the existence of a solution in Strichartz-type spaces. We prove U-V multilinear estimates to replace the previously used Sobolev multilinear estimates. To incorporate the weaker estimates, we work out new combinatorics from scratch and compute, for the first time, the time integration limits, in the recombined Duhamel–Born expansion. The new combinatorics and the U-V estimates then seamlessly conclude the $H^{1}$ unconditional uniqueness for the NLS under the infinite-hierarchy framework. This work establishes a unified scheme to prove $H^{1}$ uniqueness for the $ \mathbb {R}^{3}/\mathbb {R}^{4}/\mathbb {T}^{3}/\mathbb {T}^{4}$ energy-critical Gross–Pitaevskii hierarchies and thus the corresponding NLS.
In this paper, we prove existence results of a one-dimensional periodic solution to equations with the fractional Laplacian of order $s\in (1/2,1)$, singular nonlinearity and gradient term under various situations, including nonlocal contra-part of classical Lienard vector equations, as well other nonlocal versions of classical results know only in the context of second-order ODE. Our proofs are based on degree theory and Perron's method, so before that we need to establish a variety of priori estimates under different assumptions on the nonlinearities appearing in the equations. Besides, we obtain also multiplicity results in a regime where a priori bounds are lost and bifurcation from infinity occurs.
The dynamics of the fragmentation equation with size diffusion is investigated when the size ranges in $(0,\infty)$. The associated linear operator involves three terms and can be seen as a nonlocal perturbation of a Schrödinger operator. A Miyadera perturbation argument is used to prove that it is the generator of a positive, analytic semigroup on a weighted $L_1$-space. Moreover, if the overall fragmentation rate does not vanish at infinity, then there is a unique stationary solution with given mass. Assuming further that the overall fragmentation rate diverges to infinity for large sizes implies the immediate compactness of the semigroup and that it eventually stabilizes at an exponential rate to a one-dimensional projection carrying the information of the mass of the initial value.
In this paper, we develop an extremely simple method to establish the sharpened Adams-type inequalities on higher-order Sobolev spaces $W^{m,\frac {n}{m}}(\mathbb {R}^n)$ in the entire space $\mathbb {R}^n$, which can be stated as follows: Given $\Phi \left ( t\right ) =e^{t}-\underset {j=0}{\overset {n-2}{\sum }} \frac {t^{j}}{j!}$ and the Adams sharp constant $\beta _{n,m}$. Then,
for any $0<\alpha <1$. Furthermore, we construct a proper test function sequence to derive the sharpness of the exponent $\alpha $ of the above Adams inequalities. Namely, we will show that if $\alpha \ge 1$, then the above supremum is infinite.
Our argument avoids applying the complicated blow-up analysis often used in the literature to deal with such sharpened inequalities.
where $s,t\in (0,1)$ and the mass $m>0.$ By using the direct method of moving plane, we prove the strict monotonicity, symmetry and uniqueness for positive solutions to the above system in a bounded domain, unbounded domain, $\mathbb {R}^{N}$, $\mathbb {R}^{N}_{+}$ and a coercive epigraph domain $\Omega$ in $\mathbb {R}^{N}$, respectively.
We show that the energy norm of weak solutions to Vlasov equation coupled with a shear thickening fluid on the whole space has a decay rate the energy norm $E(t) \leq {C}/{(1+t)^{\alpha }}, \forall t \geq 0$ for $\alpha \in (0,3/2)$.
where $f$ satisfies a uniform VMO condition with respect to the $x$-variable and is continuous with respect to ${\bf u}$. The growth condition with respect to the gradient variable is assumed a general one.