We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate the equilibrium configurations of closed planar elastic curves of fixed length, whose stiffness, also known as the bending rigidity, depends on an additional density variable. The underlying variational model relies on the minimisation of a bending energy with respect to shape and density and can be considered as a one-dimensional analogue of the Canham–Helfrich model for heterogeneous biological membranes. We present a generalised Euler–Bernoulli elastica functional featuring a density-dependent stiffness coefficient. In order to treat the inherent nonconvexity of the problem, we introduce an additional length scale in the model by means of a density gradient term. We derive the system of Euler–Lagrange equations and study the bifurcation structure of solutions with respect to the model parameters. Both analytical and numerical results are presented.
In this paper, we discuss the solvability of the p-k-Hessian inequality
$\sigma _{k}^{\frac 1k} ( \lambda ( D_{i} (|Du|^{p-2}$
$ D_{j}u ) ) ) \geq f(u)$
on the entire space
$\mathbb {R}^{n}$
and provide a necessary and sufficient condition, which can be regarded as a generalized Keller–Osserman condition. Furthermore, we obtain the optimal regularity of solution.
We consider the $\mathbb {T}^{4}$ cubic nonlinear Schrödinger equation (NLS), which is energy-critical. We study the unconditional uniqueness of solutions to the NLS via the cubic Gross–Pitaevskii hierarchy, an uncommon method for NLS analysis which is being explored [24, 35] and does not require the existence of a solution in Strichartz-type spaces. We prove U-V multilinear estimates to replace the previously used Sobolev multilinear estimates. To incorporate the weaker estimates, we work out new combinatorics from scratch and compute, for the first time, the time integration limits, in the recombined Duhamel–Born expansion. The new combinatorics and the U-V estimates then seamlessly conclude the $H^{1}$ unconditional uniqueness for the NLS under the infinite-hierarchy framework. This work establishes a unified scheme to prove $H^{1}$ uniqueness for the $ \mathbb {R}^{3}/\mathbb {R}^{4}/\mathbb {T}^{3}/\mathbb {T}^{4}$ energy-critical Gross–Pitaevskii hierarchies and thus the corresponding NLS.
In this paper, we prove existence results of a one-dimensional periodic solution to equations with the fractional Laplacian of order $s\in (1/2,1)$, singular nonlinearity and gradient term under various situations, including nonlocal contra-part of classical Lienard vector equations, as well other nonlocal versions of classical results know only in the context of second-order ODE. Our proofs are based on degree theory and Perron's method, so before that we need to establish a variety of priori estimates under different assumptions on the nonlinearities appearing in the equations. Besides, we obtain also multiplicity results in a regime where a priori bounds are lost and bifurcation from infinity occurs.
The dynamics of the fragmentation equation with size diffusion is investigated when the size ranges in
$(0,\infty)$
. The associated linear operator involves three terms and can be seen as a nonlocal perturbation of a Schrödinger operator. A Miyadera perturbation argument is used to prove that it is the generator of a positive, analytic semigroup on a weighted
$L_1$
-space. Moreover, if the overall fragmentation rate does not vanish at infinity, then there is a unique stationary solution with given mass. Assuming further that the overall fragmentation rate diverges to infinity for large sizes implies the immediate compactness of the semigroup and that it eventually stabilizes at an exponential rate to a one-dimensional projection carrying the information of the mass of the initial value.
In this paper, we develop an extremely simple method to establish the sharpened Adams-type inequalities on higher-order Sobolev spaces
$W^{m,\frac {n}{m}}(\mathbb {R}^n)$
in the entire space
$\mathbb {R}^n$
, which can be stated as follows: Given
$\Phi \left ( t\right ) =e^{t}-\underset {j=0}{\overset {n-2}{\sum }} \frac {t^{j}}{j!}$
and the Adams sharp constant
$\beta _{n,m}$
. Then,
for any
$0<\alpha <1$
. Furthermore, we construct a proper test function sequence to derive the sharpness of the exponent
$\alpha $
of the above Adams inequalities. Namely, we will show that if
$\alpha \ge 1$
, then the above supremum is infinite.
Our argument avoids applying the complicated blow-up analysis often used in the literature to deal with such sharpened inequalities.
where $s,t\in (0,1)$ and the mass $m>0.$ By using the direct method of moving plane, we prove the strict monotonicity, symmetry and uniqueness for positive solutions to the above system in a bounded domain, unbounded domain, $\mathbb {R}^{N}$, $\mathbb {R}^{N}_{+}$ and a coercive epigraph domain $\Omega$ in $\mathbb {R}^{N}$, respectively.
We show that the energy norm of weak solutions to Vlasov equation coupled with a shear thickening fluid on the whole space has a decay rate the energy norm $E(t) \leq {C}/{(1+t)^{\alpha }}, \forall t \geq 0$ for $\alpha \in (0,3/2)$.
where $f$ satisfies a uniform VMO condition with respect to the $x$-variable and is continuous with respect to ${\bf u}$. The growth condition with respect to the gradient variable is assumed a general one.
It is known that a polynomial local diffeomorphism $(f,\, g): {\mathbb {R}}^{2} \to {\mathbb {R}}^{2}$ is a global diffeomorphism provided the higher homogeneous terms of $f f_x+g g_x$ and $f f_y+g g_y$ do not have real linear factors in common. Here, we give a weight-homogeneous framework of this result. Our approach uses qualitative theory of differential equations. In our reasoning, we obtain a result on polynomial Hamiltonian vector fields in the plane, generalization of a known fact.
In this paper, we prove the existence and regularity of pullback attractors for non-autonomous nonclassical diffusion equations with nonlocal diffusion when the nonlinear term satisfies critical exponential growth and the external force term $h \in L_{l o c}^{2}(\mathbb {R} ; H^{-1}(\Omega )).$ Under some appropriate assumptions, we establish the existence and uniqueness of the weak solution in the time-dependent space $\mathcal {H}_{t}(\Omega )$ and the existence and regularity of the pullback attractors.
which was introduced by Short et al. in [40] with
$\chi=2$
to describe the dynamics of urban crime.
In bounded intervals
$\Omega\subset\mathbb{R}$
and with prescribed suitably regular non-negative functions
$B_1$
and
$B_2$
, we first prove the existence of global classical solutions for any choice of
$\chi>0$
and all reasonably regular non-negative initial data.
We next address the issue of determining the qualitative behaviour of solutions under appropriate assumptions on the asymptotic properties of
$B_1$
and
$B_2$
. Indeed, for arbitrary
$\chi>0$
, we obtain boundedness of the solutions given strict positivity of the average of
$B_2$
over the domain; moreover, it is seen that imposing a mild decay assumption on
$B_1$
implies that u must decay to zero in the long-term limit. Our final result, valid for all
$\chi\in\left(0,\frac{\sqrt{6\sqrt{3}+9}}{2}\right),$
which contains the relevant value
$\chi=2$
, states that under the above decay assumption on
$B_1$
, if furthermore
$B_2$
appropriately stabilises to a non-trivial function
$B_{2,\infty}$
, then (u,v) approaches the limit
$(0,v_\infty)$
, where
$v_\infty$
denotes the solution of
We conclude with some numerical simulations exploring possible effects that may arise when considering large values of
$\chi$
not covered by our qualitative analysis. We observe that when
$\chi$
increases, solutions may grow substantially on short time intervals, whereas only on large timescales diffusion will dominate and enforce equilibration.
The Fisher–Kolmogorov–Petrovsky–Piskunov (Fisher–KPP) equation is one of the prototypical reaction–diffusion equations and is encountered in many areas, primarily in population dynamics. An important consideration for the phenomena modelled by diffusion equations is the length of the diffusive process. In this paper, three definitions of the critical time are given, and bounds are obtained by a careful construction of the upper and lower solutions. The comparison functions satisfy the nonlinear, but linearizable, partial differential equations of Fisher–KPP type. Results of the numerical simulations are displayed. Extensions to some classes of reaction–diffusion systems and an application to a spatially heterogeneous harvesting model are also presented.
This paper presents the current state of mathematical modelling of the electrochemical behaviour of lithium-ion batteries (LIBs) as they are charged and discharged. It reviews the models developed by Newman and co-workers, both in the cases of dilute and moderately concentrated electrolytes and indicates the modelling assumptions required for their development. Particular attention is paid to the interface conditions imposed between the electrolyte and the active electrode material; necessary conditions are derived for one of these, the Butler–Volmer relation, in order to ensure physically realistic solutions. Insight into the origin of the differences between various models found in the literature is revealed by considering formulations obtained by using different measures of the electric potential. Materials commonly used for electrodes in LIBs are considered and the various mathematical models used to describe lithium transport in them discussed. The problem of upscaling from models of behaviour at the single electrode particle scale to the cell scale is addressed using homogenisation techniques resulting in the pseudo-2D model commonly used to describe charge transport and discharge behaviour in lithium-ion cells. Numerical solution to this model is discussed and illustrative results for a common device are computed.
In this paper we study the existence and the analytic dependence upon domain perturbation of the solutions of a nonlinear nonautonomous transmission problem for the Laplace equation. The problem is defined in a pair of sets consisting of a perforated domain and an inclusion whose shape is determined by a suitable diffeomorphism $\phi$. First we analyse the case in which the inclusion is a fixed domain. Then we will perturb the inclusion and study the arising boundary value problem and the dependence of a specific family of solutions upon the perturbation parameter $\phi$.
For $1< p<\infty$ we prove an $L^{p}$-version of the generalized trace-free Korn inequality for incompatible tensor fields $P$ in $W^{1,p}_0(\operatorname {Curl}; \Omega ,\mathbb {R}^{3\times 3})$. More precisely, let $\Omega \subset \mathbb {R}^{3}$ be a bounded Lipschitz domain. Then there exists a constant $c>0$ such that
\[ \lVert{ P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\leq c\,\left(\lVert{\operatorname{dev} \operatorname{sym} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})} + \lVert{ \operatorname{dev} \operatorname{Curl} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\right) \]
holds for all tensor fields $P\in W^{1,p}_0(\operatorname {Curl}; \Omega ,\mathbb {R}^{3\times 3})$, i.e., for all $P\in W^{1,p} (\operatorname {Curl}; \Omega ,\mathbb {R}^{3\times 3})$ with vanishing tangential trace $P\times \nu =0$ on $\partial \Omega$ where $\nu$ denotes the outward unit normal vector field to $\partial \Omega$ and $\operatorname {dev} P : = P -\frac 13 \operatorname {tr}(P) {\cdot } {\mathbb {1}}$ denotes the deviatoric (trace-free) part of $P$. We also show the norm equivalence
\begin{align*} &\lVert{ P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}+\lVert{ \operatorname{Curl} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\\ &\quad\leq c\,\left(\lVert{P}\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})} + \lVert{ \operatorname{dev} \operatorname{Curl} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\right) \end{align*}
for tensor fields $P\in W^{1,p}(\operatorname {Curl}; \Omega ,\mathbb {R}^{3\times 3})$. These estimates also hold true for tensor fields with vanishing tangential trace only on a relatively open (non-empty) subset $\Gamma \subseteq \partial \Omega$ of the boundary.
In this article, we give a comprehensive characterization of $L^1$-summability for the Navier-Stokes flows in the half space, which is a long-standing problem. The main difficulties are that $L^q-L^r$ estimates for the Stokes flow don't work in this end-point case: $q=r=1$; the projection operator $P: L^1\longrightarrow L^1_\sigma$ is not bounded any more; useful information on the pressure function is missing, which arises in the net force exerted by the fluid on the noncompact boundary. In order to achieve our aims, by making full use of the special structure of the half space, we decompose the pressure function into two parts. Then the knotty problem of handling the pressure term can be transformed into establishing a crucial and new weighted $L^1$-estimate, which plays a fundamental role. In addition, we overcome the unboundedness of the projection $P$ by solving an elliptic problem with homogeneous Neumann boundary condition.
We prove that immersions of planar domains are uniquely specified by their Jacobian determinant, curl function and boundary values. This settles the two-dimensional version of an outstanding conjecture related to a particular grid generation method in computer graphics.
In this paper, we study the existence and concentration behaviour of multi-peak standing waves for a singularly perturbed Davey–Stewartson system, which arises in the theory of shallow water waves. For this purpose, we first give a sharp threshold of the existence of ground-state solutions to the related limiting problem. Next, combining the penalization method and the regularity theory of elliptic equations, we construct a family of positive solutions concentrating around any prescribed finite set of local minima, possibly degenerate, of the potential. A feature of this analysis is that we do not need any uniqueness or non-degeneracy conditions for the limiting equation. To the best of our knowledge, this paper is the first study dealing with the study of concentrating solutions for Davey–Stewartson systems. We emphasize that with respect to the classical Schrödinger equation, the presence of a singular integral operator in the Davey–Stewartson system forces the implementation of new ideas to obtain the existence of multi-peak solutions.