We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We develop a deep autoencoder architecture that can be used to find a coordinate transformation which turns a non-linear partial differential equation (PDE) into a linear PDE. Our architecture is motivated by the linearising transformations provided by the Cole–Hopf transform for Burgers’ equation and the inverse scattering transform for completely integrable PDEs. By leveraging a residual network architecture, a near-identity transformation can be exploited to encode intrinsic coordinates in which the dynamics are linear. The resulting dynamics are given by a Koopman operator matrix K. The decoder allows us to transform back to the original coordinates as well. Multiple time step prediction can be performed by repeated multiplication by the matrix K in the intrinsic coordinates. We demonstrate our method on a number of examples, including the heat equation and Burgers’ equation, as well as the substantially more challenging Kuramoto–Sivashinsky equation, showing that our method provides a robust architecture for discovering linearising transforms for non-linear PDEs.
This paper is mainly concerned with the global asymptotic behaviour of the unique solution to a class of singular Dirichlet problems − Δu = b(x)g(u), u > 0, x ∈ Ω, u|∂Ω = 0, where Ω is a bounded smooth domain in ℝn, g ∈ C1(0, ∞) is positive and decreasing in (0, ∞) with $\lim _{s\rightarrow 0^+}g(s)=\infty$, b ∈ Cα(Ω) for some α ∈ (0, 1), which is positive in Ω, but may vanish or blow up on the boundary properly. Moreover, we reveal the asymptotic behaviour of such a solution when the parameters on b tend to the corresponding critical values.
We deal with an initial boundary value problem of nonhomogeneous Boussinesq equations for magnetohydrodynamics convection in two-dimensional domains. We prove that there is a unique global strong solution. Moreover, we show that the temperature converges exponentially to zero in H1 as time goes to infinity. In particular, the initial data can be arbitrarily large and vacuum is allowed. Our analysis relies on energy method and a lemma of Desjardins (Arch. Rational Mech. Anal. 137:135–158, 1997).
We propose and investigate a stage-structured SLIRM epidemic model with latent period in a spatially continuous habitat. We first show the existence of semi-travelling waves that connect the unstable disease-free equilibrium as the wave coordinate goes to − ∞, provided that the basic reproduction number $\mathcal {R}_0 > 1$ and $c > c_*$ for some positive number $c_*$. We then use a combination of asymptotic estimates, Laplace transform and Cauchy's integral theorem to show the persistence of semi-travelling waves. Based on the persistent property, we construct a Lyapunov functional to prove the convergence of the semi-travelling wave to an endemic (positive) equilibrium as the wave coordinate goes to + ∞. In addition, by the Laplace transform technique, the non-existence of bounded semi-travelling wave is also proved when $\mathcal {R}_0 > 1$ and $0 < c < c_*$. This indicates that $c_*$ is indeed the minimum wave speed. Finally simulations are given to illustrate the evolution of profiles.
This paper deals with the logistic Keller–Segel model
\[ \begin{cases} u_t = \Delta u - \chi \nabla\cdot(u\nabla v) + \kappa u - \mu u^2, \\ v_t = \Delta v - v + u \end{cases} \]
in bounded two-dimensional domains (with homogeneous Neumann boundary conditions and for parameters χ, κ ∈ ℝ and μ > 0), and shows that any nonnegative initial data (u0, v0) ∈ L1 × W1,2 lead to global solutions that are smooth in $\bar {\Omega }\times (0,\infty )$.
We show the incompressible Navier–Stokes–Maxwell system with solenoidal Ohm's law can be derived from the two-fluid incompressible Navier–Stokes–Maxwell system when the momentum transfer coefficient tends to zero. The strategy is based on the decay and dissipative properties of the electromagnetic field.
In this paper, we investigate the global boundedness, asymptotic stability and pattern formation of predator–prey systems with density-dependent prey-taxis in a two-dimensional bounded domain with Neumann boundary conditions, where the coefficients of motility (diffusiq‘dfdon) and mobility (prey-taxis) of the predator are correlated through a prey density-dependent motility function. We establish the existence of classical solutions with uniform-in time bound and the global stability of the spatially homogeneous prey-only steady states and coexistence steady states under certain conditions on parameters by constructing Lyapunov functionals. With numerical simulations, we further demonstrate that spatially homogeneous time-periodic patterns, stationary spatially inhomogeneous patterns and chaotic spatio-temporal patterns are all possible for the parameters outside the stability regime. We also find from numerical simulations that the temporal dynamics between linearised system and nonlinear systems are quite different, and the prey density-dependent motility function can trigger the pattern formation.
We analyse oscillatory instabilities for a coupled partial-ordinary differential equation (PDE-ODE) system modelling the communication between localised spatially segregated dynamically active signalling compartments that are coupled through a passive extracellular bulk diffusion field in a bounded 2D domain. Each signalling compartment is assumed to secrete a chemical into the extracellular medium (bulk region), and it can also sense the concentration of this chemical in the region around its boundary. This feedback from the bulk region, resulting from the entire collection of cells, in turn modifies the intracellular dynamics within each cell. In the limit where the signalling compartments are circular discs with a small common radius ɛ ≪ 1 and where the bulk diffusivity is asymptotically large, a matched asymptotic analysis is used to reduce the dimensionless PDE–ODE system into a nonlinear ODE system with global coupling. For Sel’kov reaction kinetics, this ODE system for the intracellular dynamics and the spatial average of the bulk diffusion field are then used to investigate oscillatory instabilities in the dynamics of the cells that are triggered due to the global coupling. In particular, numerical bifurcation software on the ODEs is used to study the overall effect of coupling defective cells (cells that behave differently from the remaining cells) to a group of identical cells. Moreover, when the number of cells is large, the Kuramoto order parameter is computed to predict the degree of phase synchronisation of the intracellular dynamics. Quorum sensing behaviour, characterised by the onset of collective behaviour in the intracellular dynamics as the number of cells increases above a threshold, is also studied. Our analysis shows that the cell population density plays a dual role of triggering and then quenching synchronous oscillations in the intracellular dynamics.
We prove that any simple planar travelling wave solution to the membrane equation in spatial dimension $d\geqslant 3$ with bounded spatial extent is globally nonlinearly stable under sufficiently small compactly supported perturbations, where the smallness depends on the size of the support of the perturbation as well as on the initial travelling wave profile. The main novelty of the argument is the lack of higher order peeling in our vector-field-based method. In particular, the higher order energies (in fact, all energies at order $2$ or higher) are allowed to grow polynomially (but in a controlled way) in time. This is in contrast with classical global stability arguments, where only the ‘top’ order energies used in the bootstrap argument exhibit growth, and reflects the fact that the background travelling wave solution has ‘infinite energy’ and the coefficients of the perturbation equation are not asymptotically Lorentz invariant. Nonetheless, we can prove that the perturbation converges to zero in $C^{2}$ by carefully analysing the nonlinear interactions and exposing a certain ‘vestigial’ null structure in the equations.
The paper is devoted to the existence and rigorous homogenisation of the generalised Poisson–Nernst–Planck problem describing the transport of charged species in a two-phase domain. By this, inhomogeneous conditions are supposed at the interface between the pore and solid phases. The solution of the doubly non-linear cross-diffusion model is discontinuous and allows a jump across the phase interface. To prove an averaged problem, the two-scale convergence method over periodic cells is applied and formulated simultaneously in the two phases and at the interface. In the limit, we obtain a non-linear system of equations with averaged matrices of the coefficients, which are based on cell problems due to diffusivity, permittivity and interface electric flux. The first-order corrector due to the inhomogeneous interface condition is derived as the solution to a non-local problem.
where $p>0$, $q, \mu \in \mathbb {R}$, $m>1$ and $I_\alpha$ is the Riesz potential of order $\alpha \in (0,N)$. We obtain necessary and sufficient conditions for the existence of positive solutions.
This paper deals with solutions of semilinear elliptic equations of the type
\[ \left\{\begin{array}{@{}ll} -\Delta u = f(|x|, u) \qquad & \text{ in } \Omega, \\ u= 0 & \text{ on } \partial \Omega, \end{array} \right. \]
where Ω is a radially symmetric domain of the plane that can be bounded or unbounded. We consider solutions u that are invariant by rotations of a certain angle θ and which have a bound on their Morse index in spaces of functions invariant by these rotations. We can prove that or u is radial, or, else, there exists a direction $e\in \mathcal {S}$ such that u is symmetric with respect to e and it is strictly monotone in the angular variable in a sector of angle θ/2. The result applies to least-energy and nodal least-energy solutions in spaces of functions invariant by rotations and produces multiplicity results.
We consider the Cauchy problem for a general class of parabolic partial differential equations in the Euclidean space ℝN. We show that given a weighted Lp-space $L_w^p({\mathbb {R}}^N)$ with 1 ⩽ p < ∞ and a fast growing weight w, there is a Schauder basis $(e_n)_{n=1}^\infty$ in $L_w^p({\mathbb {R}}^N)$ with the following property: given an arbitrary positive integer m there exists nm > 0 such that, if the initial data f belongs to the closed linear span of en with n ⩾ nm, then the decay rate of the solution of the problem is at least t−m for large times t.
The result generalizes the recent study of the authors concerning the classical linear heat equation. We present variants of the result having different methods of proofs and also consider finite polynomial decay rates instead of unlimited m.
We propose and study a class of parabolic-ordinary differential equation models involving chemotaxis and haptotaxis of a species following signals indirectly produced by another, non-motile one. The setting is motivated by cancer invasion mediated by interactions with the tumour microenvironment, but has much wider applicability, being able to comprise descriptions of biologically quite different problems. As a main mathematical feature constituting a core difference to both classical Keller–Segel chemotaxis systems and Chaplain–Lolas type chemotaxis–haptotaxis systems, the considered model accounts for certain types of indirect signal production mechanisms. The main results assert unique global classical solvability under suitably mild assumptions on the system parameter functions in associated spatially two-dimensional initial-boundary value problems. In particular, this rigorously confirms that at least in two-dimensional settings, the considered indirectness in signal production induces a significant blow-up suppressing tendency also in taxis systems substantially more general than some particular examples for which corresponding effects have recently been observed.
We investigate the Fano resonance in grating structures using coupled resonators. The grating consists of a perfectly conducting slab with periodically arranged subwavelength slit holes, where inside each period, a pair of slits sit very close to each other. The slit holes act as resonators and are strongly coupled. It is shown rigorously that there exist two groups of resonances corresponding to poles of the scattering problem. One sequence of resonances has imaginary part in the order of ε, where ε is the size of the slit aperture, while the other sequence has imaginary part in the order of ε2. When coupled with the incident wave at resonant frequencies, the narrow-band resonant scattering induced by the latter will interfere with the broader background resonant radiation induced by the former. The interference of these two resonances generates the Fano-type transmission anomaly, which persists in the whole radiation continuum of the grating structure as long as the slit aperture size is small compared to the incident wavelength.
We consider a Keller–Segel model that describes the cellular chemotactic movement away from repulsive chemical subject to logarithmic sensitivity function over a confined region in
${{\mathbb{R}}^n},\,n \le 2$
. This sensitivity function describes the empirically tested Weber–Fecher’s law of living organism’s perception of a physical stimulus. We prove that, regardless of chemotaxis strength and initial data, this repulsive system is globally well-posed and the constant solution is the global and exponential in time attractor. Our results confirm the ‘folklore’ that chemorepulsion inhibits the formation of non-trivial steady states within the logarithmic chemotaxis model, hence preventing cellular aggregation therein.
where $N,p>2$ and $\max \{0,N-4\}<\unicode[STIX]{x1D6FC}<N$. We prove that if $u\in C^{1}(\mathbb{R}^{N})$ is a stable weak solution of the equation, then $u\equiv 0$. This phenomenon is quite different from that of the local Lane–Emden equation, where such a result only holds for low exponents in high dimensions. Our result is the first Liouville theorem for Choquard-type equations with supercritical exponents and $\unicode[STIX]{x1D6FC}\neq 2$.
This paper deals with the global existence for a class of Keller–Segel model with signal-dependent motility and general logistic term under homogeneous Neumann boundary conditions in a higher-dimensional smoothly bounded domain, which can be written as
then the considered system possesses a global classical solution for all sufficiently smooth initial data. Furthermore, the solution converges to the equilibrium
We analyze stability of conservative solutions of the Cauchy problem on the line for the Camassa–Holm (CH) equation. Generically, the solutions of the CH equation develop singularities with steep gradients while preserving continuity of the solution itself. In order to obtain uniqueness, one is required to augment the equation itself by a measure that represents the associated energy, and the breakdown of the solution is associated with a complicated interplay where the measure becomes singular. The main result in this paper is the construction of a Lipschitz metric that compares two solutions of the CH equation with the respective initial data. The Lipschitz metric is based on the use of the Wasserstein metric.