We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider the minimizing problem for the energy functional with prescribed mass constraint related to the fractional non-linear Schrödinger equation with periodic potentials. Using the concentration-compactness principle, we show a complete classification for the existence and non-existence of minimizers for the problem. In the mass-critical case, under a suitable assumption of the potential, we give a detailed description of blow-up behaviour of minimizers once the mass tends to a critical value.
We study Fourier transforms of regular holonomic ${\mathcal{D}}$-modules. In particular, we show that their solution complexes are monodromic. An application to direct images of some irregular holonomic ${\mathcal{D}}$-modules will be given. Moreover, we give a new proof of the classical theorem of Brylinski and improve it by showing its converse.
We use a method developed by Strauss to obtain global well-posedness results in the mild sense and existence of asymptotic states for the small data Cauchy problem in modulation spaces ${M}^s_{p,q}(\mathbb{R}^d)$, where q = 1 and $s\geq0$ or $q\in(1,\infty]$ and $s>\frac{d}{q'}$ for a nonlinear Schrödinger equation with higher order anisotropic dispersion and algebraic nonlinearities.
We establish gradient estimates for solutions to the Dirichlet problem for the constant mean curvature equation in hyperbolic space. We obtain these estimates on bounded strictly convex domains by using the maximum principles theory of Φ-functions of Payne and Philippin. These estimates are then employed to solve the Dirichlet problem when the mean curvature H satisfies H < 1 under suitable boundary conditions.
In this paper, we study the existence and concentration of normalized solutions to the supercritical nonlinear Schrödinger equation
\[ \left\{\begin{array}{@{}ll} -\Delta u + V(x) u = \mu_q u + a \vert u \vert ^q u & {\rm in}\ \mathbb{R}^2,\\ \int_{\mathbb{R}^2} \vert u \vert ^2\,{\rm d}x =1, & \end{array} \right.\]
where μq is the Lagrange multiplier. For ellipse-shaped potentials V(x), we show that for q > 2 close to 2, the equation admits an excited solution uq, and furthermore, we study the limiting behaviour of uq when q → 2+. Particularly, we describe precisely the blow-up formation of the excited state uq.
In a singularly perturbed limit, we analyse the existence and linear stability of steady-state hotspot solutions for an extension of the 1-D three-component reaction-diffusion (RD) system formulated and studied numerically in Jones et. al. [Math. Models. Meth. Appl. Sci., 20, Suppl., (2010)], which models urban crime with police intervention. In our extended RD model, the field variables are the attractiveness field for burglary, the criminal population density and the police population density. Our model includes a scalar parameter that determines the strength of the police drift towards maxima of the attractiveness field. For a special choice of this parameter, we recover the ‘cops-on-the-dots’ policing strategy of Jones et. al., where the police mimic the drift of the criminals towards maxima of the attractiveness field. For our extended model, the method of matched asymptotic expansions is used to construct 1-D steady-state hotspot patterns as well as to derive nonlocal eigenvalue problems (NLEPs) that characterise the linear stability of these hotspot steady states to ${\cal O}$(1) timescale instabilities. For a cops-on-the-dots policing strategy, we prove that a multi-hotspot steady state is linearly stable to synchronous perturbations of the hotspot amplitudes. Alternatively, for asynchronous perturbations of the hotspot amplitudes, a hybrid analytical–numerical method is used to construct linear stability phase diagrams in the police vs. criminal diffusivity parameter space. In one particular region of these phase diagrams, the hotspot steady states are shown to be unstable to asynchronous oscillatory instabilities in the hotspot amplitudes that arise from a Hopf bifurcation. Within the context of our model, this provides a parameter range where the effect of a cops-on-the-dots policing strategy is to only displace crime temporally between neighbouring spatial regions. Our hybrid approach to study the NLEPs combines rigorous spectral results with a numerical parameterisation of any Hopf bifurcation threshold. For the cops-on-the-dots policing strategy, our linear stability predictions for steady-state hotspot patterns are confirmed from full numerical PDE simulations of the three-component RD system.
We prove the existence of global minimisers for a class of attractive–repulsive interaction potentials that are in general not radially symmetric. The global minimisers have compact support. For potentials including degenerate power-law diffusion, the interaction potential can be unbounded from below. Further, a formal calculation indicates that for non-symmetric potentials global minimisers may neither be radial symmetric nor unique.
The decontamination of hazardous chemical agents from porous media is an important and critical part of the clean-up operation following a chemical weapon attack. Decontamination is often achieved through the application of a cleanser, which reacts on contact with an agent to neutralise it. While it is relatively straightforward to write down a model that describes the interplay of the agent and cleanser on the scale of the pores in the porous medium, it is computationally expensive to solve such a model over realistic spill sizes.
In this paper, we consider the homogenisation of a pore-scale model for the interplay between agent and cleanser, with the aim of generating simplified models that can be solved more easily on the spill scale but accurately capture the microscale structure and chemical activity. We consider two situations: one in which the agent completely fills local porespaces and one in which it does not. In the case when the agent does not completely fill the porespace, we use established homogenisation techniques to systematically derive a reaction–diffusion model for the macroscale concentration of cleanser. However, in the case where the agent completely fills the porespace, the homogenisation procedure is more in-depth and involves a two-timescale approach coupled with a spatial boundary layer. The resulting homogenised model closely resembles the microscale model with the effect of the porous material being incorporated into the parameters. The two models cater for two different spill scenarios and provide the foundation for further study of reactive decontamination.
We consider Fokker–Planck equations with tilted periodic potential in the subcritical regime and characterise the spatio-temporal dynamics of the partial masses in the limit of vanishing diffusion. Our convergence proof relies on suitably defined substitute masses and bounds the approximation error using the energy-dissipation relation of the underlying Wasserstein gradient structure. In the appendix, we also discuss the case of an asymmetric double-well potential and derive the corresponding limit dynamics in an elementary way.
This paper deals with the periodic homogenization of nonlocal parabolic Hamilton–Jacobi equations with superlinear growth in the gradient terms. We show that the problem presents different features depending on the order of the nonlocal operator, giving rise to three different cell problems and effective operators. To prove the locally uniform convergence to the unique solution of the Cauchy problem for the effective equation we need a new comparison principle among viscosity semi-solutions of integrodifferential equations that can be of independent interest.
where a : ℝ → [0, ∞) is C1 and a nonincreasing continuous function near the origin, the nonlinear term f : Ω × ℝ → ℝ is a Carathéodory function verifying certain superlinear conditions only at zero, and λ is a positive parameter. The existence of the solution relies on C1-estimates and variational arguments.
where n ⩾ 2, 0 < α, β < 2, a> −α, b > −β and p, q ⩾ 1. By exploiting a direct method of scaling spheres for fractional systems, we prove that if $p \leqslant \frac {n+\alpha +2a}{n-\beta }$, $q \leqslant \frac {n+\beta +2b}{n-\alpha }$, $p+q<\frac {n+\alpha +2a}{n-\beta }+\frac {n+\beta +2b}{n-\alpha }$ and (u, v) is a nonnegative strong solution of the system, then u ≡ v ≡ 0.
A credit default swap (CDS) is an exchange of premium payments for a compensation for the occurrence of a credit event. Counterparty risks refer to defaults of parties holding CDS contracts. In this paper we develop a valuation/pricing model for a CDS subject to counterparty risks. Using the Cox–Ingersoll–Ross (CIR) model for interest rate and first arrival times of Poisson processes with variable intensities for the occurrences of credit default and counterparty defaults, we derive a mathematical formulation and make a full theoretical investigation. In addition, we develop a full theory for the corresponding infinite horizon problem and establish its connection with the asymptotic long expiry behaviour of finite horizon problem. Furthermore, we establish a connection between two major frameworks for default times: the structure model approach and the intensity model approach. We show that a solution of the structure model can be obtained as the limit of a sequence of solutions of intensity models. Regarded as an important theoretical development, we remove a constraint typically imposed on the parameters of the CIR model; that is, the well-posedness (existence, uniqueness and continuous dependence of parameters) of the mathematical model holds for any empirically calibrated parameters for the CIR model.
We consider two-dimensional mass transport to a finite absorbing strip in a uniform shear flow as a model of surface-based biosensors. The quantity of interest is the Sherwood number Sh, namely the dimensionless net flux onto the strip. Considering early-time absorption, it is a function of the Péclet number Pe and the Damköhler number Da, which, respectively, represent the characteristic magnitude of advection and reaction relative to diffusion. With a view towards modelling nanoscale biosensors, we consider the limit Pe«1. This singular limit is handled using matched asymptotic expansions, with an inner region on the scale of the strip, where mass transport is diffusively dominated, and an outer region at distances that scale as Pe-1/2, where advection enters the dominant balance. At the inner region, the mass concentration possesses a point-sink behaviour at large distances, proportional to Sh. A rescaled concentration, normalised using that number, thus possesses a universal logarithmic divergence; its leading-order correction represents a uniform background concentration. At the outer region, where advection by the shear flow enters the leading-order balance, the strip appears as a point singularity. Asymptotic matching with the concentration field in that region provides the Sherwood number as
wherein β is the background concentration. The latter is determined by the solution of the canonical problem governing the rescaled inner concentration, and is accordingly a function of Da alone. Using elliptic-cylinder coordinates, we have obtained an exact solution of the canonical problem, valid for arbitrary values of Da. It is supplemented by approximate solutions for both small and large Da values, representing the respective limits of reaction- and transport-limited conditions.
We prove the existence of multi-soliton and kink-multi-soliton solutions of the Euler–Korteweg system in dimension one. Such solutions behave asymptotically in time like several travelling waves far away from each other. A kink is a travelling wave with different limits at ±∞. The main assumption is the linear stability of the solitons, and we prove that this assumption is satisfied at least in the transonic limit. The proof relies on a classical approach based on energy estimates and a compactness argument.
The Hardy-Rellich inequality in the whole space with the best constant was firstly proved by Tertikas and Zographopoulos in Adv. Math. (2007) in higher dimensions N ⩾ 5. Then it was extended to lower dimensions N ∈ {3, 4} by Beckner in Forum Math. (2008) and Ghoussoub-Moradifam in Math. Ann. (2011) by applying totally different techniques.
In this note, we refine the method implemented by Tertikas and Zographopoulos, based on spherical harmonics decomposition, to give an easy and compact proof of the optimal Hardy–Rellich inequality in any dimension N ⩾ 3. In addition, we provide minimizing sequences which were not explicitly mentioned in the quoted papers in lower dimensions N ∈ {3, 4}, emphasizing their symmetry breaking. We also show that the best constant is not attained in the proper functional space.
Let n ⩾ 3 and 0 < m < (n − 2)/n. We extend the results of Vazquez and Winkler (2011, J. Evol. Equ. 11, no. 3, 725–742) and prove the uniqueness of finite points blow-up solutions of the fast diffusion equation ut = Δum in both bounded domains and ℝn × (0, ∞). We also construct initial data such that the corresponding solution of the fast diffusion equation in bounded domain oscillates between infinity and some positive constant as t → ∞.
This paper concerns the study of some bifurcation properties for the following class of Choquard-type equations:
(P)
$$\left\{ {\begin{array}{*{20}{l}}
{ - \Delta u = \lambda f(x)\left[ {u + \left( {{I_\alpha }*f( \cdot )H(u)} \right)h(u)} \right],{\rm{ in }} \ {{\mathbb{R}}^3},}\\
{{{\lim }_{|x| \to \infty }}u(x) = 0,\quad u(x) > 0,\quad x \in {{\mathbb{R}}^3},\quad u \in {D^{1,2}}({{\mathbb{R}}^3}),}
\end{array}} \right.$$
where ${I_\alpha }(x) = 1/|x{|^\alpha },\,\alpha \in (0,3),\,\lambda > 0,\,f:{{\mathbb{R}}^3} \to {\mathbb{R}}$ is a positive continuous function and h : ${\mathbb{R}} \to {\mathbb{R}}$ is a bounded Hölder continuous function. The main tools used are Leray–Schauder degree theory and a global bifurcation result due to Rabinowitz.
The aim of this paper is to provide and numerically test in the presence of measurement noise a procedure for target classification in wave imaging based on comparing frequency-dependent distribution descriptors with precomputed ones in a dictionary of learned distributions. Distribution descriptors for inhomogeneous objects are obtained from the scattering coefficients. First, we extract the scattering coefficients of the (inhomogeneous) target from the perturbation of the reflected waves. Then, for a collection of inhomogeneous targets, we build a frequency-dependent dictionary of distribution descriptors and use a matching algorithm in order to identify a target from the dictionary up to some translation, rotation and scaling.
We study the temporal decay estimate of the Oseen semigroup in a two-dimensional exterior domain. We establish the local energy decay estimate with a suitable dependence on the small translation speed, which is a significant improvement of Hishida’s result in 2016. As an application, we prove the $L^{q}$-$L^{r}$ estimates of the Oseen semigroup uniformly in the small translation speed.