To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
on the space interval (0, 1) with two sets of the boundary conditions: the Dirichlet and periodic ones. For both situations we prove that there exists the unique H1 bounded trajectory of this equation defined for all t ∈ ℝ. Moreover we demonstrate that this trajectory attracts all trajectories both in pullback and forward sense. We also prove that for the Dirichlet case this attraction is exponential.
We present a Hopf boundary point lemma for the difference between two Hölder continuously differentiable functions, each weak solutions to a divergence-form quasilinear equation, under mild boundedness assumptions on the coefficients of this equation.
Let Ω ⊂ ℝN be a bounded domain and δ(x) be the distance of a point x ∈ Ω to the boundary. We study the positive solutions of the problem Δu + (μ/(δ(x)2))u = up in Ω, where p > 0, p ≠ 1 and μ ∈ ℝ, μ ≠ 0 is smaller than the Hardy constant. The interplay between the singular potential and the nonlinearity leads to interesting structures of the solution sets. In this paper, we first give the complete picture of the radial solutions in balls. In particular, we establish for p > 1 the existence of a unique large solution behaving like δ−(2/(p−1)) at the boundary. In general domains, we extend the results of Bandle and Pozio and show that there exists a unique singular solutions u such that $u/\delta ^{\beta _-}\to c$ on the boundary for an arbitrary positive function $c \in C^{2+\gamma }(\partial \Omega ) \, (\gamma \in (0,1)), c \ges 0$. Here β− is the smaller root of β(β − 1) + μ = 0.
We study an initial-boundary value problem of the three-dimensional Navier-Stokes equations in the exterior of a cylinder $\Pi =\{x=(x_{h}, x_3)\ \vert \vert x_{h} \vert \gt 1\}$, subject to the slip boundary condition. We construct unique global solutions for axisymmetric initial data $u_0\in L^{3}\cap L^{2}(\Pi )$ satisfying the decay condition of the swirl component $ru^{\theta }_{0}\in L^{\infty }(\Pi )$.
We consider the equation Δu = Vu in the half-space ${\open R}_ + ^d $, d ⩾ 2 where V has certain periodicity properties. In particular, we show that such equations cannot have non-trivial superexponentially decaying solutions. As an application this leads to a new proof for the absolute continuity of the spectrum of particular periodic Schrödinger operators. The equation Δu = Vu is studied as part of a broader class of elliptic evolution equations.
In this paper, we obtain gradient estimates of the positive solutions to weighted p-Laplacian type equations with a gradient-dependent nonlinearity of the form0.1
$${\rm div }( \vert x \vert ^\sigma \vert \nabla u \vert ^{p-2}\nabla u) = \vert x \vert ^{-\tau }u^q \vert \nabla u \vert ^m\quad {\rm in}\;\Omega^*: = \Omega {\rm \setminus }\{ 0\} .$$
Here, $\Omega \subseteq {\open R}^N$ denotes a domain containing the origin with $N\ges 2$, whereas $m,q\in [0,\infty )$, $1<p\les N+\sigma $ and $q>\max \{p-m-1,\sigma +\tau -1\}$. The main difficulty arises from the dependence of the right-hand side of (0.1) on x, u and $ \vert \nabla u \vert $, without any upper bound restriction on the power m of $ \vert \nabla u \vert $. Our proof of the gradient estimates is based on a two-step process relying on a modified version of the Bernstein's method. As a by-product, we extend the range of applicability of the Liouville-type results known for (0.1).
We devote this paper to proving non-existence and existence of stable solutions to weighted Lane-Emden equations on the Euclidean space ℝN, N ⩾ 2. We first prove some new Liouville-type theorems for stable solutions which recover and considerably improve upon the known results. In particular, our approach applies to various weighted equations, which naturally appear in many applications, but that are not covered by the existing literature. A typical example is provided by the well-know Matukuma's equation. We also prove an existence result for positive, bounded and stable solutions to a large family of weighted Lane–Emden equations, which indicates that our Liouville-type theorems are somehow sharp.
For the Choquard equation, which is a nonlocal nonlinear Schrödinger type equation,
$$-\Delta u+V_{\mu, \nu} u=(I_\alpha\ast \vert u \vert ^{({N+\alpha})/{N}}){ \vert u \vert }^{{\alpha}/{N}-1}u,\quad {\rm in} \ {\open R}^N, $$
where $N\ges 3$, Vμ,ν :ℝN → ℝ is an external potential defined for μ, ν > 0 and x ∈ ℝN by Vμ,ν(x) = 1 − μ/(ν2 + |x|2) and $I_\alpha : {\open R}^N \to 0$ is the Riesz potential for α ∈ (0, N), we exhibit two thresholds μν, μν > 0 such that the equation admits a positive ground state solution if and only if μν < μ < μν and no ground state solution exists for μ < μν. Moreover, if μ > max{μν, N2(N − 2)/4(N + 1)}, then equation still admits a sign changing ground state solution provided $N \ges 4$ or in dimension N = 3 if in addition 3/2 < α < 3 and $\ker (-\Delta + V_{\mu ,\nu }) = \{ 0\} $, namely in the non-resonant case.
where Δp denotes the p-Laplacian on ( − 1, 1), with p > 1, and the function f:[ − 1, 1] × ℝ → ℝ is continuous, and the partial derivative fv exists and is continuous and bounded on [ − 1, 1] × ℝ. It will be shown that (under certain additional hypotheses) the ‘principle of linearized stability’ holds for equilibrium solutions u0 of (1). That is, the asymptotic stability, or instability, of u0 is determined by the sign of the principal eigenvalue of a suitable linearization of the problem (1) at u0. It is well-known that this principle holds for the semilinear case p = 2 (Δ2 is the linear Laplacian), but has not been shown to hold when p ≠ 2.
We also consider a bifurcation type problem similar to (1), having a line of trivial solutions. We characterize the stability or instability of the trivial solutions, and the bifurcating, non-trivial solutions, and show that there is an ‘exchange of stability’ at the bifurcation point, analogous to the well-known result when p = 2.
We consider a second-order elliptic operator L in skew product of an ordinary differential operator L1 on an interval (a, b) and an elliptic operator on a domain D2 of a Riemannian manifold such that the associated heat kernel is intrinsically ultracontractive. We give criteria for criticality and subcriticality of L in terms of a positive solution having minimal growth at η (η = a, b) to an associated ordinary differential equation. In the subcritical case, we explicitly determine the Martin compactification and Martin kernel for L on the basis of [24]; in particular, the Martin boundary over η is either one point or a compactification of D2, which depends on whether an associated integral near η diverges or converges. From this structure theorem we show a monotonicity property that the Martin boundary over η does not become smaller as the potential term of L1 becomes larger near η.
In this paper, we study the existence of positive solutions to a semilinear nonlocal elliptic problem with the fractional α-Laplacian on Rn, 0 < α < n. We show that the problem has infinitely many positive solutions in $ {C^\tau}({R^n})\bigcap H_{loc}^{\alpha /2}({R^n}) $. Moreover, each of these solutions tends to some positive constant limit at infinity. We can extend our previous result about sub-elliptic problem to the nonlocal problem on Rn. We also show for α ∊ (0, 2) that in some cases, by the use of Hardy’s inequality, there is a nontrivial non-negative $ H_{loc}^{\alpha /2}({R^n}) $ weak solution to the problem
We consider the stability of nonlinear travelling waves in a class of activator-inhibitor systems. The eigenvalue equation arising from linearizing about the wave is seen to preserve the manifold of Lagrangian planes for a nonstandard symplectic form. This allows us to define a Maslov index for the wave corresponding to the spatial evolution of the unstable bundle. We formulate the Evans function for the eigenvalue problem and show that the parity of the Maslov index determines the sign of the derivative of the Evans function at the origin. The connection between the Evans function and the Maslov index is established by a ‘detection form,’ which identifies conjugate points for the curve of Lagrangian planes.
where ${\open R}^N \setminus \Omega $ is a bounded regular domain. The existence of a bound state solution is established in situations where this problem does not have a ground state.
where the function a(x, t, ξ) satisfies (p, q)-growth conditions. We give an a priori estimate for weak solutions in the case of possibly discontinuous coefficients. More precisely, the partial maps $x\mapsto a(x,t,\xi )$ under consideration may not be continuous, but may only possess a Sobolev-type regularity. In a certain sense, our assumption means that the weak derivatives $D_xa(\cdot ,\cdot ,\xi )$ are contained in the class $L^\alpha (0,T;L^\beta (\Omega ))$, where the integrability exponents $\alpha ,\beta $ are coupled by
for some κ ∈ (0,1). For the gap between the two growth exponents we assume
$$2 \les p < q \les p + \displaystyle{{2\kappa } \over {n + 2}}.$$
Under further assumptions on the integrability of the spatial gradient, we prove a result on higher differentiability in space as well as the existence of a weak time derivative $u_t\in L^{p/(q-1)}_{{\rm loc}}(\Omega _T)$. We use the corresponding a priori estimate to deduce the existence of solutions of Cauchy–Dirichlet problems with the mentioned higher differentiability property.
We prove Hölder continuous regularity of bounded, uniformly continuous, viscosity solutions of degenerate fully nonlinear equations defined in all of ℝn space. In particular, the result applies also to some operators in Carnot groups.
We prove that the fractional Yamabe equation ${\rm {\cal L}}_\gamma u = \vert u \vert ^{((4\gamma )/(Q-2\gamma ))}u$ on the Heisenberg group ℍn has [n + 1/2] sequences of nodal (sign-changing) weak solutions whose elements have mutually different nodal properties, where ${\rm {\cal L}}_\gamma $ denotes the CR fractional sub-Laplacian operator on ℍn, Q = 2n + 2 is the homogeneous dimension of ℍn, and $\gamma \in \bigcup\nolimits_{k = 1}^n [k,((kQ)/Q-1)))$. Our argument is variational, based on a Ding-type conformal pulling-back transformation of the original problem into a problem on the CR sphere S2n + 1 combined with a suitable Hebey-Vaugon-type compactness result and group-theoretical constructions for special subgroups of the unitary group U(n + 1).
In this paper, we look for the weight functions (say g) that admit the following generalized Hardy-Rellich type inequality:
$$\int_\Omega g (x)u^2 dx \les C\int_\Omega \vert \Delta u \vert ^2 dx,\quad \forall u\in {\rm {\cal D}}_0^{2,2} (\Omega ),$$
for some constant C > 0, where Ω is an open set in ℝN with N ⩾ 1. We find various classes of such weight functions, depending on the dimension N and the geometry of Ω. Firstly, we use the Muckenhoupt condition for the one-dimensional weighted Hardy inequalities and a symmetrization inequality to obtain admissible weights in certain Lorentz-Zygmund spaces. Secondly, using the fundamental theorem of integration we obtain the weight functions in certain weighted Lebesgue spaces. As a consequence of our results, we obtain simple proofs for the embeddings of ${\cal D}_0^{2,2} $ into certain Lorentz-Zygmund spaces proved by Hansson and later by Brezis and Wainger.
where N > 2, p > 1, and u0 is a bounded continuous non-negative function in RN. We study the case where u0(x) decays at the rate |x|−2/(p−1) as |x| → ∞, and investigate the convergence property of the global solutions to the forward self-similar solutions. We first give the precise description of the relationship between the spatial decay of initial data and the large time behaviour of solutions, and then we show the existence of solutions with a time decay rate slower than the one of self-similar solutions. We also show the existence of solutions that behave in a complicated manner.
We present some comparison results for solutions to certain non-local elliptic and parabolic problems that involve the fractional Laplacian operator and mixed boundary conditions, given by a zero Dirichlet datum on part of the complementary of the domain and zero Neumann data on the rest. These results represent a non-local generalization of a Hopf's lemma for elliptic and parabolic problems with mixed conditions. In particular we prove the non-local version of the results obtained by Dávila and Dávila and Dupaigne for the classical case s = 1 in [23, 24] respectively.
where 0 < μ < N, N ⩾ 3, g(u) is of critical growth due to the Hardy–Littlewood–Sobolev inequality and $G(u)=\int ^u_0g(s)\,{\rm d}s$. Firstly, by assuming that the potential V(x) might be sign-changing, we study the existence of Mountain-Pass solution via a nonlocal version of the second concentration- compactness principle. Secondly, under the conditions introduced by Benci and Cerami , we also study the existence of high energy solution by using a nonlocal version of global compactness lemma.