We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In the present paper, we consider the nonlocal Kirchhoff problem
$$-\left(\epsilon^2a+\epsilon b\int_{{\open R}^{3}}\vert \nabla u \vert^{2}\right)\Delta u+V(x)u=u^{p}, \quad u \gt 0 \quad {\rm in} {\open R}^{3},$$
where a, b>0, 1<p<5 are constants, ϵ>0 is a parameter. Under some mild assumptions on the function V, we obtain multi-peak solutions for ϵ sufficiently small by Lyapunov–Schmidt reduction method. Even though many results on single peak solutions to singularly perturbed Kirchhoff problems have been derived in the literature by various methods, there exist no results on multi-peak solutions before this paper, due to some difficulties caused by the nonlocal term $\left(\int_{{\open R}^{3}} \vert \nabla u \vert^{2}\right)\Delta u$. A remarkable new feature of this problem is that the corresponding unperturbed problem turns out to be a system of partial differential equations, but not a single Kirchhoff equation, which is quite different from most of the elliptic singular perturbation problems.
In this paper, we study the existence and multiplicity of solutions for Kirchhoff-type superlinear problems involving non-local integro-differential operators. As a particular case, we consider the following Kirchhoff-type fractional Laplace equation:
where ( − Δ)s is the fractional Laplace operator, s ∈ (0, 1), N > 2s, Ω is an open bounded subset of ℝN with smooth boundary ∂Ω, $M:{\open R}_0^ + \to {\open R}^ + $ is a continuous function satisfying certain assumptions, and f(x, u) is superlinear at infinity. By computing the critical groups at zero and at infinity, we obtain the existence of non-trivial solutions for the above problem via Morse theory. To the best of our knowledge, our results are new in the study of Kirchhoff–type Laplacian problems.
We are concerned with an elliptic problem which describes a mean field equation of the equilibrium turbulence of vortices with variable intensities. In the first part of the paper, we describe the blow-up picture and highlight the differences from the standard mean field equation as we observe non-quantization phenomenon. In the second part, we discuss the Moser–Trudinger inequality in terms of the blow-up masses and get the existence of solutions in a non-coercive regime by means of a variational argument, which is based on some improved Moser–Trudinger inequalities.
We consider the Cauchy problem for the nonlinear Schrödinger equation on the whole space. After introducing a weaker concept of finite speed of propagation, we show that the concatenation of initial data gives rise to solutions whose time of existence increases as one translates one of the initial data. Moreover, we show that, given global decaying solutions with initial data u0, v0, if |y| is large, then the concatenated initial data u0 + v0(· − y) gives rise to globally decaying solutions.
In this paper, we study the fractional Dirichlet problem with the homogeneous exterior data posed on a bounded domain with Lipschitz continuous boundary. Under an extra assumption on the domain, slightly weaker than the exterior ball condition, we are able to prove existence and uniqueness of solutions which are Hölder continuous on the boundary. In proving this result, we use appropriate barrier functions obtained by an approximation procedure based on a suitable family of zero-th order problems. This procedure, in turn, allows us to obtain an approximation scheme for the Dirichlet problem through an equicontinuous family of solutions of the approximating zero-th order problems on ${\bar \Omega}$. Both results are extended to an ample class of fully non-linear operators.
We establish existence of weighted Hardy and Rellich inequalities on the spaces $L_{p}(\unicode[STIX]{x1D6FA})$, where $\unicode[STIX]{x1D6FA}=\mathbf{R}^{d}\backslash K$ with $K$ a closed convex subset of $\mathbf{R}^{d}$. Let $\unicode[STIX]{x1D6E4}=\unicode[STIX]{x2202}\unicode[STIX]{x1D6FA}$ denote the boundary of $\unicode[STIX]{x1D6FA}$ and $d_{\unicode[STIX]{x1D6E4}}$ the Euclidean distance to $\unicode[STIX]{x1D6E4}$. We consider weighting functions $c_{\unicode[STIX]{x1D6FA}}=c\circ d_{\unicode[STIX]{x1D6E4}}$ with $c(s)=s^{\unicode[STIX]{x1D6FF}}(1+s)^{\unicode[STIX]{x1D6FF}^{\prime }-\unicode[STIX]{x1D6FF}}$ and $\unicode[STIX]{x1D6FF},\unicode[STIX]{x1D6FF}^{\prime }\geq 0$. Then the Hardy inequalities take the form
with $H=-\text{div}(c_{\unicode[STIX]{x1D6FA}}\unicode[STIX]{x1D6FB})$. The constants $b_{p},d_{p}$ depend on the weighting parameters $\unicode[STIX]{x1D6FF},\unicode[STIX]{x1D6FF}^{\prime }\geq 0$ and the Hausdorff dimension of the boundary. We compute the optimal constants in a broad range of situations.
We study the initial boundary value problem for a fourth-order parabolic equation with nonstandard growth conditions. We establish the local existence of weak solutions and derive the finite time blow-up of solutions with nonpositive initial energy.
Tissue engineering aims to grow artificial tissues in vitro to replace those in the body that have been damaged through age, trauma or disease. A recent approach to engineer artificial cartilage involves seeding cells within a scaffold consisting of an interconnected 3D-printed lattice of polymer fibres combined with a cast or printed hydrogel, and subjecting the construct (cell-seeded scaffold) to an applied load in a bioreactor. A key question is to understand how the applied load is distributed throughout the construct. To address this, we employ homogenisation theory to derive equations governing the effective macroscale material properties of a periodic, elastic–poroelastic composite. We treat the fibres as a linear elastic material and the hydrogel as a poroelastic material, and exploit the disparate length scales (small inter-fibre spacing compared with construct dimensions) to derive macroscale equations governing the response of the composite to an applied load. This homogenised description reflects the orthotropic nature of the composite. To validate the model, solutions from finite element simulations of the macroscale, homogenised equations are compared to experimental data describing the unconfined compression of the fibre-reinforced hydrogels. The model is used to derive the bulk mechanical properties of a cylindrical construct of the composite material for a range of fibre spacings and to determine the local mechanical environment experienced by cells embedded within the construct.
We introduce an Almgren frequency function of the sub-$p$-Laplace equation on the Heisenberg group to establish a doubling estimate under the assumption that the frequency function is locally bounded. From this, we obtain some partial results on unique continuation for the sub-$p$-Laplace equation.
The Wasserstein gradient flow structure of the partial differential equation system governing multiphase flows in porous media was recently highlighted in Cancès et al. [Anal. PDE10(8), 1845–1876]. The model can thus be approximated by means of the minimising movement (or JKO after Jordan, Kinderlehrer and Otto [SIAM J. Math. Anal.29(1), 1–17]) scheme that we solve thanks to the ALG2-JKO scheme proposed in Benamou et al. [ESAIM Proc. Surv.57, 1–17]. The numerical results are compared to a classical upstream mobility finite volume scheme, for which strong stability properties can be established.
We investigate interesting connections between Mizohata type vector fields and microlocal regularity of nonlinear first-order PDEs, establishing results in Denjoy–Carleman classes and real analyticity results in the linear case.
This paper is concerned with two frequency-dependent susceptible–infected–susceptible epidemic reaction–diffusion models in heterogeneous environment, with a cross-diffusion term modelling the effect that susceptible individuals tend to move away from higher concentration of infected individuals. It is first shown that the corresponding Neumann initial-boundary value problem in an n-dimensional bounded smooth domain possesses a unique global classical solution which is uniformly in-time bounded regardless of the strength of the cross-diffusion and the spatial dimension n. It is further shown that, even in the presence of cross-diffusion, the models still admit threshold-type dynamics in terms of the basic reproduction number $\mathcal {R}_0$ – i.e. the unique disease-free equilibrium is globally stable if $\mathcal {R}_0\lt1$, while if $\mathcal {R}_0\gt1$, the disease is uniformly persistent and there is an endemic equilibrium (EE), which is globally stable in some special cases with weak chemotactic sensitivity. Our results on the asymptotic profiles of EE illustrate that restricting the motility of susceptible population may eliminate the infectious disease entirely for the first model with constant total population but fails for the second model with varying total population. In particular, this implies that such cross-diffusion does not contribute to the elimination of the infectious disease modelled by the second one.
The linear Schrödinger equation with piecewise constant potential in one spatial dimension is a well-studied textbook problem. It is one of only a few solvable models in quantum mechanics and shares many qualitative features with physically important models. In examples such as ‘particle in a box’ and tunnelling, attention is restricted to the time-independent Schrödinger equation. This paper combines the unified transform method and recent insights for interface problems to present fully explicit solutions for the time-dependent problem.
This work is devoted to the study of an integro-differential system of equations modelling the genetic adaptation of a pathogen by taking into account both mutation and selection processes. First, we study the asymptotic behaviour of the system and prove that it eventually converges to a stationary state. Next, we more closely investigate the behaviour of the system in the presence of multiple EAs. Under suitable assumptions and based on a small mutation variance asymptotic, we describe the existence of a long transient regime during which the pathogen population remains far from its asymptotic behaviour and highly concentrated around some phenotypic value that is different from the one described by its asymptotic behaviour. In that setting, the time needed for the system to reach its large time configuration is very long and multiple evolutionary attractors may act as a barrier of evolution that can be very long to bypass.
In the present paper we deal with a quasilinear problem involving a singular term. By combining truncation techniques with variational methods, we prove the existence of three weak solutions. As far as we know, this is the first contribution in this direction in the high-dimensional case.
In this paper, we study the initial boundary value problem for a class of fourth order damped wave equations with arbitrary positive initial energy. In the framework of the energy method, we further exploit the properties of the Nehari functional. Finally, the global existence and finite time blow-up of solutions are obtained.
We give two-sided estimates for positive solutions of the superlinear
elliptic problem $-\unicode[STIX]{x1D6E5}u=a(x)|u|^{p-1}u$ with zero Dirichlet boundary condition in a bounded
Lipschitz domain. Our result improves the well-known a priori$L^{\infty }$-estimate and provides information about the boundary decay
rate of solutions.
We consider a curvature flow $V=\unicode[STIX]{x1D705}+A$ in a two-dimensional undulating cylinder $\unicode[STIX]{x1D6FA}$ described by $\unicode[STIX]{x1D6FA}:=\{(x,y)\in \mathbb{R}^{2}\mid -g_{1}(y)<x<g_{2}(y),y\in \mathbb{R}\}$, where $V$ is the normal velocity of a moving curve contacting the boundaries of $\unicode[STIX]{x1D6FA}$ perpendicularly, $\unicode[STIX]{x1D705}$ is its curvature, $A>0$ is a constant and $g_{1}(y),g_{2}(y)$ are positive smooth functions. If $g_{1}$ and $g_{2}$ are periodic functions and there are no stationary curves, Matano et al. [‘Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit’, Netw. Heterog. Media1 (2006), 537–568] proved the existence of a periodic travelling wave. We consider the case where $g_{1},g_{2}$ are general nonperiodic positive functions and the problem has some stationary curves. For each stationary curve $\unicode[STIX]{x1D6E4}$ unstable from above/below, we construct an entire solution growing out of it, that is, a solution curve $\unicode[STIX]{x1D6E4}_{t}$ which increases/decreases monotonically, converging to $\unicode[STIX]{x1D6E4}$ as $t\rightarrow -\infty$ and converging to another stationary curve or to $+\infty /-\infty$ as $t\rightarrow \infty$.
We study the existence and uniqueness of ${\mathcal{S}}$-asymptotically periodic solutions for a general class of
abstract differential equations with state-dependent delay. Some examples
related to problems arising in population dynamics are presented.
In the following note, we focus on the problem of existence of continuous solutions vanishing at infinity to the equation div v = f for f ∈ Ln(ℝn) and satisfying an estimate of the type ||v||∞ ⩽ C||f||n for any f ∈ Ln(ℝn), where C > 0 is related to the constant appearing in the Sobolev–Gagliardo–Nirenberg inequality for functions with bounded variation (BV functions).