To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we extend to Kawahara type equations a uniqueness result obtained by C. E. Kenig, G. Ponce, and L. Vega for KdV type equations. We prove that, under certain decay's conditions, the null solution is the unique solution.
In this paper, we consider the Stokes equations in a perforated domain. When the number of holes increases while their radius tends to 0, it is proven in Desvillettes et al. [J. Stat. Phys.131 (2008) 941–967], under suitable dilution assumptions, that the solution is well approximated asymptotically by solving a Stokes–Brinkman equation. We provide here quantitative estimates in $L^{p}$-norms of this convergence.
We prove Hardy-type inequalities for a fractional Dunkl–Hermite operator, which incidentally gives Hardy inequalities for the fractional harmonic oscillator as well. The idea is to use h-harmonic expansions to reduce the problem in the Dunkl–Hermite context to the Laguerre setting. Then, we push forward a technique based on a non-local ground representation, initially developed by Frank et al. [‘Hardy–Lieb–Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc.21 (2008), 925–950’] in the Euclidean setting, to obtain a Hardy inequality for the fractional-type Laguerre operator. The above-mentioned method is shown to be adaptable to an abstract setting, whenever there is a ‘good’ spectral theorem and an integral representation for the fractional operators involved.
In the theory of spontaneous combustion, identifying the critical value of the Frank-Kamenetskii parameter corresponds to solving a bifurcation point problem. There are two different numerical methods used to solve this problem—the direct and indirect numerical methods. The latter finds the bifurcation point by solving a partial differential equation (PDE) problem. This is a better method to find the bifurcation point for complex geometries. This paper improves the indirect numerical method by combining the grid-domain extension method with the matrix equation computation method. We calculate the critical parameters of the Frank-Kamenetskii equation for some complex geometries using the indirect numerical method. Our results show that both the curve of the outer boundary and the height of the geometries have an effect on the values of the critical Frank-Kamenetskii parameter, however, they have little effect on the critical dimensionless temperature.
with p > 1, q ≥ max{p − 1, 1}. We exploit the Moser iteration technique to prove a Harnack comparison inequality for C1 weak solutions. As a consequence we deduce a strong comparison principle.
The convergence and blow-up results are established for the evolution of non-simple closed curves in an area-preserving curvature flow. It is shown that the global solution starting from a locally convex curve converges to an m-fold circle if the enclosed algebraic area A0 is positive, and evolves into a point if A0 = 0.
We construct travelling waves in the Burgers equation with the fractional Laplacian $(D^{2})^{\unicode[STIX]{x1D6FC}}$, $\unicode[STIX]{x1D6FC}\in (1/2,1)$. This is done by first constructing odd solutions $u_{\unicode[STIX]{x1D700}}$ of $uu^{\prime }=K_{\unicode[STIX]{x1D700}_{1}}\ast u-k_{\unicode[STIX]{x1D700}_{1}}u+\unicode[STIX]{x1D700}_{2}u^{\prime \prime }$, $u(-\infty )=u_{c}>0$, with $K_{\unicode[STIX]{x1D700}_{1}}\ast u-k_{\unicode[STIX]{x1D700}_{1}}u$ nonsingular, and then passing to the limit $\unicode[STIX]{x1D700}_{1},\unicode[STIX]{x1D700}_{2}\rightarrow 0$, to give $K_{\unicode[STIX]{x1D700}_{1}}\ast u_{\unicode[STIX]{x1D700}}-k_{\unicode[STIX]{x1D700}_{1}}u_{\unicode[STIX]{x1D700}}\rightarrow (D^{2})^{\unicode[STIX]{x1D6FC}}u_{0}$ pointwise. The proof relies on operator splitting.
We consider the existence of normalized solutions in H1(ℝN) × H1(ℝN) for systems of nonlinear Schr¨odinger equations, which appear in models for binary mixtures of ultracold quantum gases. Making a solitary wave ansatz, one is led to coupled systems of elliptic equations of the form
and we are looking for solutions satisfying
where a1> 0 and a2> 0 are prescribed. In the system, λ1 and λ2 are unknown and will appear as Lagrange multipliers. We treat the case of homogeneous nonlinearities, i.e. , with positive constants β, μi, pi, ri. The exponents are Sobolev subcritical but may be L2-supercritical. Our main result deals with the case in which in dimensions 2 ≤ N ≤ 4. We also consider the cases in which all of these numbers are less than 2 + 4/N or all are bigger than 2 + 4/N.
We study the dynamics of a domain wall under the influence of applied magnetic fields in a one-dimensional ferromagnetic nanowire, governed by the Landau–Lifshitz–Gilbert equation. Existence of travelling-wave solutions close to two known static solutions is proven using implicit-function-theorem-type arguments.
We study global solution curves and prove the existence of infinitely many positive solutions for three classes of self-similar equations with p-Laplace operator. In the p = 2 case these are well-known problems involving the Gelfand equation, the equation modelling electrostatic micro-electromechanical systems (MEMS), and a polynomial nonlinearity. We extend the classical results of Joseph and Lundgren to the case in which p ≠ 2, and we generalize the main result of Guo and Wei on the equation modelling MEMS.
In this paper, we study the positive solutions for a semilinear equation in hyperbolic space. Using the heat semigroup and by constructing subsolutions and supersolutions, a Fujita-type result is established.
The KP-II equation was derived by Kadmotsev and Petviashvili to explain stability of line solitary waves of shallow water. Recently, Mizumachi proved nonlinear stability of 1-line solitons for exponentially localized perturbations. In this paper, we prove stability of 1-line solitons for perturbations in (1 + x2)−1/2−0H1(ℝ2) and perturbations in H1(ℝ2) ∩ ∂xL2(ℝ2).
This paper presents a heuristic Learning-based Non-Negativity Constrained Variation (L-NNCV) aiming to search the coefficients of variational model automatically and make the variation adapt different images and problems by supervised-learning strategy. The model includes two terms: a problem-based term that is derived from the prior knowledge, and an image-driven regularization which is learned by some training samples. The model can be solved by classical ε-constraint method. Experimental results show that: the experimental effectiveness of each term in the regularization accords with the corresponding theoretical proof; the proposed method outperforms other PDE-based methods on image denoising and deblurring.
In this paper we are interested in a sharp result about the global existence and blowup of solutions to a class of pseudo-parabolic equations. First, we represent a unique local weak solution in a new integral form that does not depend on any semigroup. Second, with the help of the Nehari manifold related to the stationary equation, we separate the whole space into two components S+ and S– via a new method, then a sufficient and necessary condition under which the weak solution blows up is established, that is, a weak solution blows up at a finite time if and only if the initial data belongs to S–. Furthermore, we study the decay behaviour of both the solution and the energy functional, and the decay ratios are given specifically.
The pricing model for American lookback options can be characterised as a two-dimensional free boundary problem. The main challenge in this problem is the free boundary, which is also the main concern for financial investors. We use a standard technique to reduce the pricing model to a one-dimensional linear complementarity problem on a bounded domain and obtain a corresponding variational inequality. The inequality is discretised by finite differences and finite elements in the temporal and spatial directions, respectively. By enforcing inequality constraints related to the options using Lagrange multipliers, the discretised variational inequality is reformulated as a set of semi-smooth equations, which are solved by a primal-dual active set method. One of the major advantages of our algorithm is that we can obtain the option values and the free boundary simultaneously, and numerical simulations show that our approach is as efficient as some other methods.
Propagation at a finite speed is established for non-negative weak solutions to a thin-film approximation of the two-phase Muskat problem. The expansion rate of the support matches the scale invariance of the system. Moreover, we determine sufficient conditions on the initial data for the occurrence of waiting time phenomena.
Positive solutions of a Kirchhoff-type nonlinear elliptic equation with a non-local integral term on a bounded domain in ℝN, N ⩾ 1, are studied by using bifurcation theory. The parameter regions of existence, non-existence and uniqueness of positive solutions are characterized by the eigenvalues of a linear eigenvalue problem and a nonlinear eigenvalue problem. Local and global bifurcation diagrams of positive solutions for various parameter regions are obtained.
We investigate the stability properties of positive steady-state solutions of semilinear initial–boundary-value problems with nonlinear boundary conditions. In particular, we employ a principle of linearized stability for this class of problems to prove sufficient conditions for the stability and instability of such solutions. These results shed some light on the combined effects of the reaction term and the boundary nonlinearity on stability properties. We also discuss various examples satisfying our hypotheses for stability results in dimension 1. In particular, we provide complete bifurcation curves for positive solutions for these examples.
We analyse the decay properties of the solution semigroup S(t) generated by the linear integrodifferential equation
where the operator A is strictly positive self-adjoint with A–1 not necessarily compact. The asymptotic stability of S(t) is investigated in terms of the dependence of the parameter γ ∈ ℝ. In particular, we show that S(t) is not exponentially stable when γ ≠ 1.