To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider a possibly anisotropic integrodifferential semilinear equation, driven by a non-decreasing nonlinearity. We prove that if the solution grows less than the order of the operator at infinity, then it must be affine (possibly constant).
We study the residual diffusion phenomenon in chaotic advection computationally via adaptive orthogonal basis. The chaotic advection is generated by a class of time periodic cellular flows arising in modeling transition to turbulence in Rayleigh-Bénard experiments. The residual diffusion refers to the non-zero effective (homogenized) diffusion in the limit of zero molecular diffusion as a result of chaotic mixing of the streamlines. In this limit, the solutions of the advection-diffusion equation develop sharp gradients, and demand a large number of Fourier modes to resolve, rendering computation expensive. We construct adaptive orthogonal basis (training) with built-in sharp gradient structures from fully resolved spectral solutions at few sampled molecular diffusivities. This is done by taking snapshots of solutions in time, and performing singular value decomposition of the matrix consisting of these snapshots as column vectors. The singular values decay rapidly and allow us to extract a small percentage of left singular vectors corresponding to the top singular values as adaptive basis vectors. The trained orthogonal adaptive basis makes possible low cost computation of the effective diffusivities at smaller molecular diffusivities (testing). The testing errors decrease as the training occurs at smaller molecular diffusivities. We make use of the Poincaré map of the advection-diffusion equation to bypass long time simulation and gain accuracy in computing effective diffusivity and learning adaptive basis. We observe a non-monotone relationship between residual diffusivity and the amount of chaos in the advection, though the overall trend is that sufficient chaos leads to higher residual diffusivity.
Grad's moment models for Boltzmann equation were recently regularized to globally hyperbolic systems and thus the regularized models attain local well-posedness for Cauchy data. The hyperbolic regularization is only related to the convection term in Boltzmann equation. We in this paper studied the regularized models with the presentation of collision terms. It is proved that the regularized models are linearly stable at the local equilibrium and satisfy Yong's first stability condition with commonly used approximate collision terms, and particularly with Boltzmann's binary collision model.
In this paper we consider a system of reaction–diffusion–advection equations with a free boundary, which arises in a competition ecological model in heterogeneous environment. The evolution of the free-boundary problem is discussed, which is an extension of the results of Du and Lin (Discrete Contin. Dynam. Syst. B19 (2014), 3105–3132). Precisely, when u is an inferior competitor, we prove that (u, v) → (0, V) as t→∞. When u is a superior competitor, we prove that a spreading–vanishing dichotomy holds, namely, as t→∞, either h(t)→∞ and (u, v) → (U, 0), or limt→∞h(t) < ∞ and (u, v) → (0, V). Moreover, in a weak competition case, we prove that two competing species coexist in the long run, while in a strong competition case, two species spatially segregate as the competition rates become large. Furthermore, when spreading occurs, we obtain some rough estimates of the asymptotic spreading speed.
where α ≥ 2, Ω is a smooth bounded domain in ${\mathbb{R}}$N, θ is a parameter and g, h ∈ C($\bar{\Omega}$ × ${\mathbb{R}}$). Under the assumptions that g(x, u) is odd and locally superlinear at infinity in u, we prove that for any j ∈ $\mathbb{N}$ there exists ϵj > 0 such that if |θ| ≤ ϵj, the above problem possesses at least j distinct solutions. Our results generalize some known results in the literature and are new even in the symmetric situation.
In this paper, the problem of magnetohydrodynamics (MHD) boundary layer flow of nanofluid with heat and mass transfer through a porous media in the presence of thermal radiation, viscous dissipation and chemical reaction is studied. Three types of nanofluids, namely Copper (Cu)-water, Alumina (Al2O3)-water and Titanium Oxide (TiO2)-water are considered. The governing set of partial differential equations of the problem is reduced into the coupled nonlinear system of ordinary differential equations (ODEs) by means of similarity transformations. Finite element solution of the resulting system of nonlinear differential equations is obtained using continuous Galerkin-Petrov discretization together with the well-known shooting technique. The obtained results are validated using MATLAB “bvp4c” function and with the existing results in the literature. Numerical results for the dimensionless velocity, temperature and concentration profiles are obtained and the impact of various physical parameters such as the magnetic parameter M, solid volume fraction of nanoparticles 𝜙 and type of nanofluid on the flow is discussed. The results obtained in this study confirm the idea that the finite element method (FEM) is a powerful mathematical technique which can be applied to a large class of linear and nonlinear problems arising in different fields of science and engineering.
In this paper, we first discuss the well-posedness of linearizing equations, and then study the stability and unstability of the 3-D compressible Euler Equation, by analysing the existence of saddle point. In addition, we give the existence of local solutions of the compressible Euler equation.
We study the following polyharmonic Hénon equation:
where (m)* = 2N/(N – 2m) is the critical exponent, B1(0) is the unit ball in ℝN, N ⩾ 2m + 2 and K(|y|) is a bounded function. We prove the existence of infinitely many non-radial positive solutions, whose energy can be made arbitrarily large.
where Ω = ℝN or Ω = B1, N ⩾ 3, p > 1 and . Using a suitable map we transform problem (1) into another one without the singularity 1/|x|2. Then we obtain some bifurcation results from the radial solutions corresponding to some explicit values of λ.
We consider the Steklov eigenvalues of the Laplace operator as limiting Neumann eigenvalues in a problem of mass concentration at the boundary of a ball. We discuss the asymptotic behaviour of the Neumann eigenvalues and find explicit formulae for their derivatives in the limiting problem. We deduce that the Neumann eigenvalues have a monotone behaviour in the limit and that Steklov eigenvalues locally minimize the Neumann eigenvalues.
We prove a strong optimal Hardy–Sobolev inequality for the twisted Laplacian on ℂn. The twisted Laplacian is the magnetic Laplacian for a system of n particles in the plane, corresponding to the constant magnetic field. The inequality we obtain is strong optimal in the sense that the weight cannot be improved. We also show that our result extends to a one-parameter family of weighted Sobolev spaces.
We consider semilinear elliptic problems on two-dimensional hyperbolic space. A model problem of our study is
where H1(𝔹2) denotes the Sobolev space on the disc model of the hyperbolic space and f(x, t) denotes the function of critical growth in dimension 2. We first establish the Palais–Smale (PS) condition for the functional corresponding to the above equation, and using the PS condition we obtain existence of solutions. In addition, using a concentration argument, we also explore existence of infinitely many sign-changing solutions.
We investigate a system of singular–degenerate parabolic equations with non-local terms, which can be regarded as a spatially heterogeneous competition model of Lotka–Volterra type. Applying the Leray–Schauder fixed-point theorem, we establish the existence of coexistence periodic solutions to the problem, which, together with the existing literature, gives a complete picture for such a system for all parameters.
We consider an infinite planar straight strip perforated by small holes along a curve. In such a domain, we consider a general second-order elliptic operator subject to classical boundary conditions on the holes. Assuming that the perforation is non-periodic and satisfies rather weak assumptions, we describe all possible homogenized problems. Our main result is the norm-resolvent convergence of the perturbed operator to a homogenized one in various operator norms and the estimates for the rate of convergence. On the basis of the norm-resolvent convergence, we prove the convergence of the spectrum.
Let Ω be an open connected cone in ℝn with vertex at the origin. Assume that the Operator
is subcritical in Ω, where δΩ is the distance function to the boundary of Ω and μ ⩽ 1/4. We show that under some smoothness assumption on Ω the improved Hardy-type inequality
holds true, and the Hardy-weight λ(μ)|x|–2 is optimal in a certain definite sense. The constant λ(μ) > 0 is given explicitly.
where d(x) = d(x, ∂Ω), θ > –2 and Ω is a half-space. The existence and non-existence of several kinds of positive solutions to this equation when , f(u) = up(p > 1) and Ω is a bounded smooth domain were studied by Bandle, Moroz and Reichel in 2008. Here, we study exact the behaviour of positive solutions to this equation as d(x) → 0+ and d(x) → ∞, respectively, and the symmetry of positive solutions when , Ω is a half-space and f(u) is a more general nonlinearity term than up. Under suitable conditions for f, we show that the equation has a unique positive solution W, which is a function of x1 only, and W satisfies
In this paper, we study the Cauchy problem for the semilinear heat and Schrödinger equations, with the nonlinear term $f(u)=\unicode[STIX]{x1D706}|u|^{\unicode[STIX]{x1D6FC}}u$. We show that low regularity of $f$ (i.e., $\unicode[STIX]{x1D6FC}>0$ but small) limits the regularity of any possible solution for a certain class of smooth initial data. We employ two different methods, which yield two different types of results. On the one hand, we consider the semilinear equation as a perturbation of the ODE $w_{t}=f(w)$. This yields, in particular, an optimal regularity result for the semilinear heat equation in Hölder spaces. In addition, this approach yields ill-posedness results for the nonlinear Schrödinger equation in certain $H^{s}$-spaces, which depend on the smallness of $\unicode[STIX]{x1D6FC}$ rather than the scaling properties of the equation. Our second method is to consider the semilinear equation as a perturbation of the linear equation via Duhamel’s formula. This yields, in particular, that if $\unicode[STIX]{x1D6FC}$ is sufficiently small and $N$ is sufficiently large, then the nonlinear heat equation is ill-posed in $H^{s}(\mathbb{R}^{N})$ for all $s\geqslant 0$.
The explosion probability before time t of a branching diffusion satisfies a nonlinear parabolic partial differential equation. This equation, along with the natural boundary and initial conditions, has only the trivial solution, i.e. explosion in finite time does not occur, provided the creation rate does not grow faster than the square power at ∞.
This paper is concerned with the asymptotic behaviour of the lifespan of solutions for a semilinear heat equation with initial datum λφ(x) in hyperbolic space. The growth rates for both λ → 0 and λ → ∞ are determined.