To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we prove existence and qualitative properties of solutions for a nonlinear elliptic system arising from the coupling of the nonlinear Schrödinger equation with the Poisson equation. We use a contraction map approach together with estimates of the Bessel potential used to rewrite the system in an integral form.
We provide an existence result of radially symmetric, positive, classical solutions for a nonlinear Schrödinger equation driven by the infinitesimal generator of a rotationally invariant Lévy process.
We prove the existence of a family of slow-decay positive solutions of a supercritical elliptic equation with Hardy potential
and study the stability and oscillation properties of these solutions. We also show that if the equation on ℝN has a stable slow-decay positive solution, then for any smooth compact K ⊂ ℝN a family of the exterior Dirichlet problems inℝN \ K admits a continuum of stable slow-decay infinite-energy solutions.
In this paper, we develop a method of solving the Poincaré–Lelong equation, mainly via the study of the large time asymptotics of a global solution to the Hodge–Laplace heat equation on $(1, 1)$-forms. The method is effective in proving an optimal result when $M$ has nonnegative bisectional curvature. It also provides an alternate proof of a recent gap theorem of the first author.
We prove that the hypotheses in the Pigola–Rigoli–Setti version of the Omori–Yau maximum principle are logically equivalent to the assumption that the manifold carries a ${C}^{2} $ proper function whose gradient and Hessian (Laplacian) are bounded. In particular, this result extends the scope of the original Omori–Yau principle, formulated in terms of lower bounds for curvature.
We define the notion of a trace kernel on a manifold $M$. Roughly speaking, it is a sheaf on $M\times M$ for which the formalism of Hochschild homology applies. We associate a microlocal Euler class with such a kernel, a cohomology class with values in the relative dualizing complex of the cotangent bundle ${T}^{\ast } M$ over $M$, and we prove that this class is functorial with respect to the composition of kernels.
This generalizes, unifies and simplifies various results from (relative) index theorems for constructible sheaves, $\mathscr{D}$-modules and elliptic pairs.
In 1991, McNabb introduced the concept of mean action time (MAT) as a finite measure of the time required for a diffusive process to effectively reach steady state. Although this concept was initially adopted by others within the Australian and New Zealand applied mathematics community, it appears to have had little use outside this region until very recently, when in 2010 Berezhkovskii and co-workers [A. M. Berezhkovskii, C. Sample and S. Y. Shvartsman, “How long does it take to establish a morphogen gradient?” Biophys. J.99 (2010) L59–L61] rediscovered the concept of MAT in their study of morphogen gradient formation. All previous work in this area has been limited to studying single-species differential equations, such as the linear advection–diffusion–reaction equation. Here we generalize the concept of MAT by showing how the theory can be applied to coupled linear processes. We begin by studying coupled ordinary differential equations and extend our approach to coupled partial differential equations. Our new results have broad applications, for example the analysis of models describing coupled chemical decay and cell differentiation processes.
In this paper, we study a system of thermoelasticity with a degenerate second-order operator in the heat equation. We analyze the evolution of the energy density of a family of solutions. We consider two cases: when the set of points where the ellipticity of the heat operator fails is included in a hypersurface and when it is an open set. In the first case, and under special assumptions, we prove that the evolution of the energy density is that of a damped wave equation: propagation along the rays of the geometric optic and damping according to a microlocal process. In the second case, we show that the energy density propagates along rays which are distortions of the rays of the geometric optic.
We prove the compactness of critical Sobolev embeddings with applications to nonlinear singular Schrödinger equations and provide a unified treatment in dimensions N > 2 and N = 2, based on a somewhat unexpectedly broad array of parallel properties between spaces and H10 of the unit disc. These properties include Leray inequality for N = 2 as a counterpart of Hardy inequality for N > 2, pointwise estimates by ground states r(2−N)/2 and of the respective Hardy-type inequalities, as well as compactness of the limiting Sobolev embeddings once the Sobolev norm is appended by a potential term whose growth at singularities exceeds that of the corresponding Hardy-type potential.
Let $\mathcal {O} \subset \mathbb {R}^d$ be a bounded domain of class $C^{1,1}$. In the Hilbert space $L_2(\mathcal {O};\mathbb {C}^n)$, we consider a matrix elliptic second order differential operator $\mathcal {A}_{D,\varepsilon }$ with the Dirichlet boundary condition. Here $\varepsilon \gt 0$ is the small parameter. The coefficients of the operator are periodic and depend on $\mathbf {x}/\varepsilon $. There are no regularity assumptions on the coefficients. A sharp order operator error estimate $\|\mathcal {A}_{D,\varepsilon }^{-1} - (\mathcal {A}_D^0)^{-1} \|_{L_2 \to L_2} \leq C \varepsilon $ is obtained. Here $\mathcal {A}^0_D$is the effective operator with constant coefficients and with the Dirichlet boundary condition.
This paper is concerned with a mass concentration phenomenon for a two-dimensional nonelliptic Schrödinger equation. It is well known that this phenomenon occurs when the ${L}^{4} $-norm of the solution blows up in finite time. We extend this result to the case where a mixed norm of the solution blows up in finite time.
In this paper, we prove the existence of the ground state for the spinor Bose–Einstein condensates with an external Ioffe–Pitchard magnetic field in the one-dimensional case. We also characterise the ground states of spin-1 Bose–Einstein condensates with an external Ioffe–Pitchard magnetic field; that is, for ferromagnetic systems, we show that, under some condition, searching for the ground state of ferromagnetic spin-1 Bose–Einstein condensates with an external Ioffe–Pitchard magnetic field can be reduced to a ‘one-component’ minimisation problem.
We establish the multiplicity of positive weak solutions for the quasilinear Dirichlet problem −Lpu + |u|p−2u = h(u) in Ωλ, u = 0 on ∂Ωλ, where Ωλ = λΩ, Ω is a bounded domain in ℝN, λ is a positive parameter, Lpu ≐ Δpu + Δp(u2)u and the nonlinear term h(u) has subcritical growth. We use minimax methods together with the Lyusternik–Schnirelmann category theory to get multiplicity of positive solutions.
We consider a class of critical quasilinear problems
where 0 ∈ Ω ⊂ ℝN, N ≥ 3, is a bounded domain and 1 < p < N, a < N/p, a ≤ b < a + 1, λ is a positive parameter, 0 ≤ μ < ≡ ((N − p)/p − a)p, q = q*(a, b) ≡ Np/[N − pd] and d ≡ a+1 − b. Infinitely many small solutions are obtained by using a version of the symmetric Mountain Pass Theorem and a variant of the concentration-compactness principle. We deal with a problem that extends some results involving singularities not only in the nonlinearities but also in the operator.
Our aim in this paper is to identify the limit behavior of the solutions of random degenerate equations of the form −div Aε(x′,∇Uε)+ρεω(x′)Uε=F with mixed boundary conditions on Ωε whenever ε→0, where Ωε is an N-dimensional thin domain with a small thickness h(ε), ρεω(x′)=ρω(x′/ε), where ρω is the realization of a random function ρ(ω) , and Aε(x′,ξ)=a(Tx′ /εω,ξ) , the map a(ω,ξ)being measurable in ω and satisfying degenerated structure conditions with weight ρ in ξ. As usual in dimension reduction problems, we focus on the rescaled equations and we prove that under the condition h(ε)/ε→0 , the sequence of solutions of them converges to a limit u0, where u0 is the solution of an (N−1) -dimensional limit problem with homogenized and auxiliary equations.
We show that the flow generated by the totally competitive planar Lotka–Volterra equations deforms the line connecting the two axial equilibria into convex or concave curves, and that these curves remain convex or concave for all subsequent time. We apply the observation to provide an alternative proof to that given by Tineo in 2001 that the carrying simplex, the globally attracting invariant manifold that joins the axial equilibria, is either convex, concave or a straight-line segment.
Let Ω⊂ℝN be a smooth bounded domain and let f⁄≡0 be a possibly discontinuous and unbounded function. We give a necessary and sufficient condition on f for the existence of positive solutions for all λ>0 of Dirichlet periodic parabolic problems of the form Lu=h(x,t,u)+λf(x,t), where h is a nonnegative Carathéodory function that is sublinear at infinity. When this condition is not fulfilled, under some additional assumptions on h we characterize the set of λs for which the aforementioned problem possesses some positive solution. All results remain true for the corresponding elliptic problems.