We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper is concerned with a mass concentration phenomenon for a two-dimensional nonelliptic Schrödinger equation. It is well known that this phenomenon occurs when the ${L}^{4} $-norm of the solution blows up in finite time. We extend this result to the case where a mixed norm of the solution blows up in finite time.
In this paper, we prove the existence of the ground state for the spinor Bose–Einstein condensates with an external Ioffe–Pitchard magnetic field in the one-dimensional case. We also characterise the ground states of spin-1 Bose–Einstein condensates with an external Ioffe–Pitchard magnetic field; that is, for ferromagnetic systems, we show that, under some condition, searching for the ground state of ferromagnetic spin-1 Bose–Einstein condensates with an external Ioffe–Pitchard magnetic field can be reduced to a ‘one-component’ minimisation problem.
We establish the multiplicity of positive weak solutions for the quasilinear Dirichlet problem −Lpu + |u|p−2u = h(u) in Ωλ, u = 0 on ∂Ωλ, where Ωλ = λΩ, Ω is a bounded domain in ℝN, λ is a positive parameter, Lpu ≐ Δpu + Δp(u2)u and the nonlinear term h(u) has subcritical growth. We use minimax methods together with the Lyusternik–Schnirelmann category theory to get multiplicity of positive solutions.
We consider a class of critical quasilinear problems
where 0 ∈ Ω ⊂ ℝN, N ≥ 3, is a bounded domain and 1 < p < N, a < N/p, a ≤ b < a + 1, λ is a positive parameter, 0 ≤ μ < ≡ ((N − p)/p − a)p, q = q*(a, b) ≡ Np/[N − pd] and d ≡ a+1 − b. Infinitely many small solutions are obtained by using a version of the symmetric Mountain Pass Theorem and a variant of the concentration-compactness principle. We deal with a problem that extends some results involving singularities not only in the nonlinearities but also in the operator.
Our aim in this paper is to identify the limit behavior of the solutions of random degenerate equations of the form −div Aε(x′,∇Uε)+ρεω(x′)Uε=F with mixed boundary conditions on Ωε whenever ε→0, where Ωε is an N-dimensional thin domain with a small thickness h(ε), ρεω(x′)=ρω(x′/ε), where ρω is the realization of a random function ρ(ω) , and Aε(x′,ξ)=a(Tx′ /εω,ξ) , the map a(ω,ξ) being measurable in ω and satisfying degenerated structure conditions with weight ρ in ξ. As usual in dimension reduction problems, we focus on the rescaled equations and we prove that under the condition h(ε)/ε→0 , the sequence of solutions of them converges to a limit u0, where u0 is the solution of an (N−1) -dimensional limit problem with homogenized and auxiliary equations.
We show that the flow generated by the totally competitive planar Lotka–Volterra equations deforms the line connecting the two axial equilibria into convex or concave curves, and that these curves remain convex or concave for all subsequent time. We apply the observation to provide an alternative proof to that given by Tineo in 2001 that the carrying simplex, the globally attracting invariant manifold that joins the axial equilibria, is either convex, concave or a straight-line segment.
Let Ω⊂ℝN be a smooth bounded domain and let f⁄≡0 be a possibly discontinuous and unbounded function. We give a necessary and sufficient condition on f for the existence of positive solutions for all λ>0 of Dirichlet periodic parabolic problems of the form Lu=h(x,t,u)+λf(x,t), where h is a nonnegative Carathéodory function that is sublinear at infinity. When this condition is not fulfilled, under some additional assumptions on h we characterize the set of λs for which the aforementioned problem possesses some positive solution. All results remain true for the corresponding elliptic problems.
We prove estimates for the partial derivatives of the solution to a time-fractional diffusion equation posed over a bounded spatial domain. Such estimates are needed for the analysis of effective numerical methods, particularly since the solution is typically less regular than in the familiar case of classical diffusion.
We give a survey on the Stokes structure of a good meromorphic flat bundle. We also show that a meromorphic flat bundle has the good formal structure if and only if it has a good lattice.
We consider large-time behaviour of global solutions of the Cauchy problem for a parabolic equation with a supercritical nonlinearity. It is known that the solution is global and unbounded if the initial value is bounded by a singular steady state and decays slowly. In this paper we show that the grow-up of solutions can be arbitrarily slow if the initial value is chosen appropriately.
We consider uniformly elliptic, second-order, linear partial differential equations depending on three variables in bounded domains. We obtain interior Hölder estimates for the first derivatives of the bounded solutions independent of the regularity assumptions of the differential operator.
In this paper we consider an initial-value problem for the nonlinear fourth-order partial differential equation ut+uux+γuxxxx=0, −∞<x<∞, t>0, where x and t represent dimensionless distance and time respectively and γ is a negative constant. In particular, we consider the case when the initial data has a discontinuous expansive step so that u(x,0)=u0(>0) for x≥0 and u(x,0)=0 for x<0. The method of matched asymptotic expansions is used to obtain the large-time asymptotic structure of the solution to this problem which exhibits the formation of an expansion wave. Whilst most physical applications of this type of equation have γ>0, our calculations show how it is possible to infer the large-time structure of a whole family of solutions for a range of related equations.
In this paper we consider an elliptic system with an inverse square potential and critical Sobolev exponent in a bounded domain of ${{\mathbb{R}}^{N}}$. By variational methods we study the existence results.
In this paper, some existence and uniqueness results for generalized solutions to a periodic-Dirichlet problem for semilinear wave equations are given, using a global inverse function theorem. These results extend those known in the literature.