We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we study the positive solutions for a semilinear equation in hyperbolic space. Using the heat semigroup and by constructing subsolutions and supersolutions, a Fujita-type result is established.
The KP-II equation was derived by Kadmotsev and Petviashvili to explain stability of line solitary waves of shallow water. Recently, Mizumachi proved nonlinear stability of 1-line solitons for exponentially localized perturbations. In this paper, we prove stability of 1-line solitons for perturbations in (1 + x2)−1/2−0H1(ℝ2) and perturbations in H1(ℝ2) ∩ ∂xL2(ℝ2).
This paper presents a heuristic Learning-based Non-Negativity Constrained Variation (L-NNCV) aiming to search the coefficients of variational model automatically and make the variation adapt different images and problems by supervised-learning strategy. The model includes two terms: a problem-based term that is derived from the prior knowledge, and an image-driven regularization which is learned by some training samples. The model can be solved by classical ε-constraint method. Experimental results show that: the experimental effectiveness of each term in the regularization accords with the corresponding theoretical proof; the proposed method outperforms other PDE-based methods on image denoising and deblurring.
In this paper we are interested in a sharp result about the global existence and blowup of solutions to a class of pseudo-parabolic equations. First, we represent a unique local weak solution in a new integral form that does not depend on any semigroup. Second, with the help of the Nehari manifold related to the stationary equation, we separate the whole space into two components S+ and S– via a new method, then a sufficient and necessary condition under which the weak solution blows up is established, that is, a weak solution blows up at a finite time if and only if the initial data belongs to S–. Furthermore, we study the decay behaviour of both the solution and the energy functional, and the decay ratios are given specifically.
The pricing model for American lookback options can be characterised as a two-dimensional free boundary problem. The main challenge in this problem is the free boundary, which is also the main concern for financial investors. We use a standard technique to reduce the pricing model to a one-dimensional linear complementarity problem on a bounded domain and obtain a corresponding variational inequality. The inequality is discretised by finite differences and finite elements in the temporal and spatial directions, respectively. By enforcing inequality constraints related to the options using Lagrange multipliers, the discretised variational inequality is reformulated as a set of semi-smooth equations, which are solved by a primal-dual active set method. One of the major advantages of our algorithm is that we can obtain the option values and the free boundary simultaneously, and numerical simulations show that our approach is as efficient as some other methods.
Propagation at a finite speed is established for non-negative weak solutions to a thin-film approximation of the two-phase Muskat problem. The expansion rate of the support matches the scale invariance of the system. Moreover, we determine sufficient conditions on the initial data for the occurrence of waiting time phenomena.
Positive solutions of a Kirchhoff-type nonlinear elliptic equation with a non-local integral term on a bounded domain in ℝN, N ⩾ 1, are studied by using bifurcation theory. The parameter regions of existence, non-existence and uniqueness of positive solutions are characterized by the eigenvalues of a linear eigenvalue problem and a nonlinear eigenvalue problem. Local and global bifurcation diagrams of positive solutions for various parameter regions are obtained.
We investigate the stability properties of positive steady-state solutions of semilinear initial–boundary-value problems with nonlinear boundary conditions. In particular, we employ a principle of linearized stability for this class of problems to prove sufficient conditions for the stability and instability of such solutions. These results shed some light on the combined effects of the reaction term and the boundary nonlinearity on stability properties. We also discuss various examples satisfying our hypotheses for stability results in dimension 1. In particular, we provide complete bifurcation curves for positive solutions for these examples.
We analyse the decay properties of the solution semigroup S(t) generated by the linear integrodifferential equation
where the operator A is strictly positive self-adjoint with A–1 not necessarily compact. The asymptotic stability of S(t) is investigated in terms of the dependence of the parameter γ ∈ ℝ. In particular, we show that S(t) is not exponentially stable when γ ≠ 1.
We consider a possibly anisotropic integrodifferential semilinear equation, driven by a non-decreasing nonlinearity. We prove that if the solution grows less than the order of the operator at infinity, then it must be affine (possibly constant).
We study the residual diffusion phenomenon in chaotic advection computationally via adaptive orthogonal basis. The chaotic advection is generated by a class of time periodic cellular flows arising in modeling transition to turbulence in Rayleigh-Bénard experiments. The residual diffusion refers to the non-zero effective (homogenized) diffusion in the limit of zero molecular diffusion as a result of chaotic mixing of the streamlines. In this limit, the solutions of the advection-diffusion equation develop sharp gradients, and demand a large number of Fourier modes to resolve, rendering computation expensive. We construct adaptive orthogonal basis (training) with built-in sharp gradient structures from fully resolved spectral solutions at few sampled molecular diffusivities. This is done by taking snapshots of solutions in time, and performing singular value decomposition of the matrix consisting of these snapshots as column vectors. The singular values decay rapidly and allow us to extract a small percentage of left singular vectors corresponding to the top singular values as adaptive basis vectors. The trained orthogonal adaptive basis makes possible low cost computation of the effective diffusivities at smaller molecular diffusivities (testing). The testing errors decrease as the training occurs at smaller molecular diffusivities. We make use of the Poincaré map of the advection-diffusion equation to bypass long time simulation and gain accuracy in computing effective diffusivity and learning adaptive basis. We observe a non-monotone relationship between residual diffusivity and the amount of chaos in the advection, though the overall trend is that sufficient chaos leads to higher residual diffusivity.
Grad's moment models for Boltzmann equation were recently regularized to globally hyperbolic systems and thus the regularized models attain local well-posedness for Cauchy data. The hyperbolic regularization is only related to the convection term in Boltzmann equation. We in this paper studied the regularized models with the presentation of collision terms. It is proved that the regularized models are linearly stable at the local equilibrium and satisfy Yong's first stability condition with commonly used approximate collision terms, and particularly with Boltzmann's binary collision model.
In this paper we consider a system of reaction–diffusion–advection equations with a free boundary, which arises in a competition ecological model in heterogeneous environment. The evolution of the free-boundary problem is discussed, which is an extension of the results of Du and Lin (Discrete Contin. Dynam. Syst. B19 (2014), 3105–3132). Precisely, when u is an inferior competitor, we prove that (u, v) → (0, V) as t→∞. When u is a superior competitor, we prove that a spreading–vanishing dichotomy holds, namely, as t→∞, either h(t)→∞ and (u, v) → (U, 0), or limt→∞h(t) < ∞ and (u, v) → (0, V). Moreover, in a weak competition case, we prove that two competing species coexist in the long run, while in a strong competition case, two species spatially segregate as the competition rates become large. Furthermore, when spreading occurs, we obtain some rough estimates of the asymptotic spreading speed.
where α ≥ 2, Ω is a smooth bounded domain in ${\mathbb{R}}$N, θ is a parameter and g, h ∈ C($\bar{\Omega}$ × ${\mathbb{R}}$). Under the assumptions that g(x, u) is odd and locally superlinear at infinity in u, we prove that for any j ∈ $\mathbb{N}$ there exists ϵj > 0 such that if |θ| ≤ ϵj, the above problem possesses at least j distinct solutions. Our results generalize some known results in the literature and are new even in the symmetric situation.
In this paper, the problem of magnetohydrodynamics (MHD) boundary layer flow of nanofluid with heat and mass transfer through a porous media in the presence of thermal radiation, viscous dissipation and chemical reaction is studied. Three types of nanofluids, namely Copper (Cu)-water, Alumina (Al2O3)-water and Titanium Oxide (TiO2)-water are considered. The governing set of partial differential equations of the problem is reduced into the coupled nonlinear system of ordinary differential equations (ODEs) by means of similarity transformations. Finite element solution of the resulting system of nonlinear differential equations is obtained using continuous Galerkin-Petrov discretization together with the well-known shooting technique. The obtained results are validated using MATLAB “bvp4c” function and with the existing results in the literature. Numerical results for the dimensionless velocity, temperature and concentration profiles are obtained and the impact of various physical parameters such as the magnetic parameter M, solid volume fraction of nanoparticles 𝜙 and type of nanofluid on the flow is discussed. The results obtained in this study confirm the idea that the finite element method (FEM) is a powerful mathematical technique which can be applied to a large class of linear and nonlinear problems arising in different fields of science and engineering.
In this paper, we first discuss the well-posedness of linearizing equations, and then study the stability and unstability of the 3-D compressible Euler Equation, by analysing the existence of saddle point. In addition, we give the existence of local solutions of the compressible Euler equation.
We study the following polyharmonic Hénon equation:
where (m)* = 2N/(N – 2m) is the critical exponent, B1(0) is the unit ball in ℝN, N ⩾ 2m + 2 and K(|y|) is a bounded function. We prove the existence of infinitely many non-radial positive solutions, whose energy can be made arbitrarily large.
where Ω = ℝN or Ω = B1, N ⩾ 3, p > 1 and . Using a suitable map we transform problem (1) into another one without the singularity 1/|x|2. Then we obtain some bifurcation results from the radial solutions corresponding to some explicit values of λ.
We consider the Steklov eigenvalues of the Laplace operator as limiting Neumann eigenvalues in a problem of mass concentration at the boundary of a ball. We discuss the asymptotic behaviour of the Neumann eigenvalues and find explicit formulae for their derivatives in the limiting problem. We deduce that the Neumann eigenvalues have a monotone behaviour in the limit and that Steklov eigenvalues locally minimize the Neumann eigenvalues.
We prove a strong optimal Hardy–Sobolev inequality for the twisted Laplacian on ℂn. The twisted Laplacian is the magnetic Laplacian for a system of n particles in the plane, corresponding to the constant magnetic field. The inequality we obtain is strong optimal in the sense that the weight cannot be improved. We also show that our result extends to a one-parameter family of weighted Sobolev spaces.