To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate interesting connections between Mizohata type vector fields and microlocal regularity of nonlinear first-order PDEs, establishing results in Denjoy–Carleman classes and real analyticity results in the linear case.
This paper is concerned with two frequency-dependent susceptible–infected–susceptible epidemic reaction–diffusion models in heterogeneous environment, with a cross-diffusion term modelling the effect that susceptible individuals tend to move away from higher concentration of infected individuals. It is first shown that the corresponding Neumann initial-boundary value problem in an n-dimensional bounded smooth domain possesses a unique global classical solution which is uniformly in-time bounded regardless of the strength of the cross-diffusion and the spatial dimension n. It is further shown that, even in the presence of cross-diffusion, the models still admit threshold-type dynamics in terms of the basic reproduction number $\mathcal {R}_0$ – i.e. the unique disease-free equilibrium is globally stable if $\mathcal {R}_0\lt1$, while if $\mathcal {R}_0\gt1$, the disease is uniformly persistent and there is an endemic equilibrium (EE), which is globally stable in some special cases with weak chemotactic sensitivity. Our results on the asymptotic profiles of EE illustrate that restricting the motility of susceptible population may eliminate the infectious disease entirely for the first model with constant total population but fails for the second model with varying total population. In particular, this implies that such cross-diffusion does not contribute to the elimination of the infectious disease modelled by the second one.
The linear Schrödinger equation with piecewise constant potential in one spatial dimension is a well-studied textbook problem. It is one of only a few solvable models in quantum mechanics and shares many qualitative features with physically important models. In examples such as ‘particle in a box’ and tunnelling, attention is restricted to the time-independent Schrödinger equation. This paper combines the unified transform method and recent insights for interface problems to present fully explicit solutions for the time-dependent problem.
This work is devoted to the study of an integro-differential system of equations modelling the genetic adaptation of a pathogen by taking into account both mutation and selection processes. First, we study the asymptotic behaviour of the system and prove that it eventually converges to a stationary state. Next, we more closely investigate the behaviour of the system in the presence of multiple EAs. Under suitable assumptions and based on a small mutation variance asymptotic, we describe the existence of a long transient regime during which the pathogen population remains far from its asymptotic behaviour and highly concentrated around some phenotypic value that is different from the one described by its asymptotic behaviour. In that setting, the time needed for the system to reach its large time configuration is very long and multiple evolutionary attractors may act as a barrier of evolution that can be very long to bypass.
In the present paper we deal with a quasilinear problem involving a singular term. By combining truncation techniques with variational methods, we prove the existence of three weak solutions. As far as we know, this is the first contribution in this direction in the high-dimensional case.
In this paper, we study the initial boundary value problem for a class of fourth order damped wave equations with arbitrary positive initial energy. In the framework of the energy method, we further exploit the properties of the Nehari functional. Finally, the global existence and finite time blow-up of solutions are obtained.
We give two-sided estimates for positive solutions of the superlinearelliptic problem $-\unicode[STIX]{x1D6E5}u=a(x)|u|^{p-1}u$ with zero Dirichlet boundary condition in a boundedLipschitz domain. Our result improves the well-known a priori$L^{\infty }$-estimate and provides information about the boundary decayrate of solutions.
We consider a curvature flow $V=\unicode[STIX]{x1D705}+A$ in a two-dimensional undulating cylinder $\unicode[STIX]{x1D6FA}$ described by $\unicode[STIX]{x1D6FA}:=\{(x,y)\in \mathbb{R}^{2}\mid -g_{1}(y)<x<g_{2}(y),y\in \mathbb{R}\}$, where $V$ is the normal velocity of a moving curve contacting the boundaries of $\unicode[STIX]{x1D6FA}$ perpendicularly, $\unicode[STIX]{x1D705}$ is its curvature, $A>0$ is a constant and $g_{1}(y),g_{2}(y)$ are positive smooth functions. If $g_{1}$ and $g_{2}$ are periodic functions and there are no stationary curves, Matano et al. [‘Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit’, Netw. Heterog. Media1 (2006), 537–568] proved the existence of a periodic travelling wave. We consider the case where $g_{1},g_{2}$ are general nonperiodic positive functions and the problem has some stationary curves. For each stationary curve $\unicode[STIX]{x1D6E4}$ unstable from above/below, we construct an entire solution growing out of it, that is, a solution curve $\unicode[STIX]{x1D6E4}_{t}$ which increases/decreases monotonically, converging to $\unicode[STIX]{x1D6E4}$ as $t\rightarrow -\infty$ and converging to another stationary curve or to $+\infty /-\infty$ as $t\rightarrow \infty$.
We study the existence and uniqueness of ${\mathcal{S}}$-asymptotically periodic solutions for a general class ofabstract differential equations with state-dependent delay. Some examplesrelated to problems arising in population dynamics are presented.
In the following note, we focus on the problem of existence of continuous solutions vanishing at infinity to the equation div v = f for f ∈ Ln(ℝn) and satisfying an estimate of the type ||v||∞ ⩽ C||f||n for any f ∈ Ln(ℝn), where C > 0 is related to the constant appearing in the Sobolev–Gagliardo–Nirenberg inequality for functions with bounded variation (BV functions).
We are concerned with the following Kirchhoff-type equation
$$ - \varepsilon ^2M\left( {\varepsilon ^{2 - N}\int_{{\open R}^N} {\vert \nabla u \vert^2{\rm d}x} } \right)\Delta u + V(x)u = f(u),\quad x \in {{\open R}^N},\quad N{\rm \ges }2,$$
where M ∈ C(ℝ+, ℝ+), V ∈ C(ℝN, ℝ+) and f(s) is of critical growth. In this paper, we construct a localized bound state solution concentrating at a local minimum of V as ε → 0 under certain conditions on f(s), M and V. In particular, the monotonicity of f(s)/s and the Ambrosetti–Rabinowitz condition are not required.
This review paper is concerned with the stability analysis of the continuity equation in the DiPerna–Lions setting in which the advecting velocity field is Sobolev regular. Quantitative estimates for the equation were derived only recently, but optimality was not discussed. We revisit the results from our 2017 paper, compare the new estimates with previously known estimates for Lagrangian flows and demonstrate how these can be applied to produce optimal bounds in applications from physics, engineering and numerical analysis.
We study the dynamics of a reaction–diffusion–advection equation $u_{t}=u_{xx}-au_{x}+f(u)$ on the right half-line with Robin boundary condition $u_{x}=au$ at $x=0$, where $f(u)$ is a combustion nonlinearity. We show that, when $0<a<c$ (where $c$ is the travelling wave speed of $u_{t}=u_{xx}+f(u)$), $u$ converges in the $L_{loc}^{\infty }([0,\infty ))$ topology either to $0$ or to a positive steady state; when $a\geq c$, a solution $u$ starting from a small initial datum tends to $0$ in the $L^{\infty }([0,\infty ))$ topology, but this is not true for a solution starting from a large initial datum; when $a>c$, such a solution converges to $0$ in $L_{loc}^{\infty }([0,\infty ))$ but not in $L^{\infty }([0,\infty ))$ topology.
We prove the uniqueness of a solution for a problem whose simplest model is
with k ≥ 1, 0 f ∈ L∞(Ω) and Ω is a bounded domain of ℝN, N ≥ 2. So far, uniqueness results are known for k < 1, while existence holds for any k ≥ 1 and f positive in open sets compactly embedded in a neighbourhood of the boundary. We extend the uniqueness results to the k ≥ 1 case and show, with an example, that existence does not hold if f is zero near the boundary. We even deal with the uniqueness result when f is replaced by a nonlinear term λuq with 0 < q < 1 and λ > 0.
We are concerned with the existence of positive weak solutions, as well as the existence of bound states (i.e. solutions in W1, p (ℝN)), for quasilinear scalar field equations of the form
$$ - \Delta _pu + V(x) \vert u \vert ^{p - 2}u = K(x) \vert u \vert ^{q - 2}u + \vert u \vert ^{p^ * - 2}u,\qquad x \in {\open R}^N,$$
where Δpu: = div(|∇ u|p−2∇u), 1 < p < N, p*: = Np/(N − p) is the critical Sobolev exponent, q ∈ (p, p*), while V(·) and K(·) are non-negative continuous potentials that may decay to zero as |x| → ∞ but are free from any integrability or symmetry assumptions.
We study systems of partial differential equations of Briot–Bouquet type. The existence of holomorphic solutions to such systems largely depends on the eigenvalues of an associated matrix. For the noninteger case, we generalise the well-known result of Gérard and Tahara [‘Holomorphic and singular solutions of nonlinear singular first order partial differential equations’, Publ. Res. Inst. Math. Sci.26 (1990), 979–1000] for Briot–Bouquet type equations to Briot–Bouquet type systems. For the integer case, we introduce a sequence of blow-up like changes of variables and give necessary and sufficient conditions for the existence of holomorphic solutions. We also give some examples to illustrate our results.
The paper studies large time behaviour of solutions to the Keller–Segel system with quadratic degradation in a liquid environment, as given by
under Neumann boundary conditions in a bounded domain Ω ⊂ ℝn, where n ≥ 1 is arbitrary. It is shown that whenever U : Ω × (0,∞) → ℝn is a bounded and sufficiently regular solenoidal vector field any non-trivial global bounded solution of (⋆) approaches the trivial equilibrium at a rate that, with respect to the norm in either of the spaces L1(Ω) and L∞(Ω), can be controlled from above and below by appropriate multiples of 1/(t + 1). This underlines that, even up to this quantitative level of accuracy, the large time behaviour in (⋆) is essentially independent not only of the particular fluid flow, but also of any effect originating from chemotactic cross-diffusion. The latter is in contrast to the corresponding Cauchy problem, for which known results show that in the n = 2 case the presence of chemotaxis can significantly enhance biomixing by reducing the respective spatial L1 norms of solutions.
A classification of the behaviour of the solutions f(·, a) to the ordinary differential equation (|f′|p-2f′)′ + f - |f′|p-1 = 0 in (0,∞) with initial condition f(0, a) = a and f′(0, a) = 0 is provided, according to the value of the parameter a > 0 when the exponent p takes values in (1, 2). There is a threshold value a* that separates different behaviours of f(·, a): if a > a*, then f(·, a) vanishes at least once in (0,∞) and takes negative values, while f(·, a) is positive in (0,∞) and decays algebraically to zero as r→∞ if a ∊ (0, a*). At the threshold value, f(·, a*) is also positive in (0,∞) but decays exponentially fast to zero as r→∞. The proof of these results relies on a transformation to a first-order ordinary differential equation and a monotonicity property with respect to a > 0. This classification is one step in the description of the dynamics near the extinction time of a diffusive Hamilton–Jacobi equation with critical gradient absorption and fast diffusion.
For bounded domains Ω, we prove that the Lp-norm of a regular function with compact support is controlled by weighted Lp-norms of its gradient, where the weight belongs to a class of symmetric non-negative definite matrix-valued functions. The class of weights is defined by regularity assumptions and structural conditions on the degeneracy set, where the determinant vanishes. In particular, the weight A is assumed to have rank at least 1 when restricted to the normal bundle of the degeneracy set S. This generalization of the classical Poincaré inequality is then applied to develop a robust theory of first-order Lp-based Sobolev spaces with matrix-valued weight A. The Poincaré inequality and these Sobolev spaces are then applied to produce various results on existence, uniqueness and qualitative properties of weak solutions to boundary-value problems for degenerate elliptic, degenerate parabolic and degenerate hyperbolic partial differential equations (PDEs) of second order written in divergence form, where A is calibrated to the matrix of coefficients of the second-order spatial derivatives. The notion of weak solution is variational: the spatial states belong to the matrix-weighted Sobolev spaces with p = 2. For the degenerate elliptic PDEs, the Dirichlet problem is treated by the use of the Poincaré inequality and Lax–Milgram theorem, while the treatment of the Cauchy–Dirichlet problem for the degenerate evolution equations relies only on the Poincaré inequality and the parabolic and hyperbolic counterparts of the Lax–Milgram theorem.
In this paper the existence and uniqueness of weak and strong solutions for a non-autonomous non-local reaction–diffusion equation is proved. Furthermore, the existence of minimal pullback attractors in the L2-norm in the frameworks of universes of fixed bounded sets and those given by a tempered growth condition is established, along with some relationships between them. Finally, we prove the existence of minimal pullback attractors in the H1-norm and study relationships among these new families and those given previously in the L2 context. We also present new results in the autonomous framework that ensure the existence of global compact attractors as a particular case.