We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The classical half-line Robin problem for the heat equation may be solved via a spatial Fourier transform method. In this work, we study the problem in which the static Robin condition $$bq(0,t) + {q_x}(0,t) = 0$$ is replaced with a dynamic Robin condition; $$b = b(t)$$ is allowed to vary in time. Applications include convective heating by a corrosive liquid. We present a solution representation and justify its validity, via an extension of the Fokas transform method. We show how to reduce the problem to a variable coefficient fractional linear ordinary differential equation for the Dirichlet boundary value. We implement the fractional Frobenius method to solve this equation and justify that the error in the approximate solution of the original problem converges appropriately. We also demonstrate an argument for existence and unicity of solutions to the original dynamic Robin problem for the heat equation. Finally, we extend these results to linear evolution equations of arbitrary spatial order on the half-line, with arbitrary linear dynamic boundary conditions.
where
$p>0$
and
$ 0<s<1 $
. We establish a Liouville-type theorem for positive solutions in the case
$p>1$
and give a uniform lower bound of positive solutions when
$0<p\leq 1$
. In particular, when v is independent of the time variable, we obtain a similar result for the fractional elliptic Lichnerowicz equation
with
$p>0$
and
$0<s<1$
. This extends the result of Brézis [‘Comments on two notes by L. Ma and X. Xu’, C. R. Math. Acad. Sci. Paris349(5–6) (2011), 269–271] to the fractional Laplacian.
This paper investigates global dynamics of an infection age-space structured cholera model. The model describes the vibrio cholerae transmission in human population, where infection-age structure of vibrio cholerae and infectious individuals are incorporated to measure the infectivity during the different stage of disease transmission. The model is described by reaction–diffusion models involving the spatial dispersal of vibrios and the mobility of human populations in the same domain Ω ⊂ ℝn. We first give the well-posedness of the model by converting the model to a reaction–diffusion model and two Volterra integral equations and obtain two constant equilibria. Our result suggest that the basic reproduction number determines the dichotomy of disease persistence and extinction, which is achieved by studying the local stability of equilibria, disease persistence and global attractivity of equilibria.
Let $\mathbb {S}^{d-1}$ denote the unit sphere in Euclidean space $\mathbb {R}^d$, $d\geq 2$, equipped with surface measure $\sigma _{d-1}$. An instance of our main result concerns the regularity of solutions of the convolution equation
$$\begin{align*}a\cdot(f\sigma_{d-1})^{\ast {(q-1)}}\big\vert_{\mathbb{S}^{d-1}}=f,\text{ a.e. on }\mathbb{S}^{d-1}, \end{align*}$$
where $a\in C^\infty (\mathbb {S}^{d-1})$, $q\geq 2(d+1)/(d-1)$ is an integer, and the only a priori assumption is $f\in L^2(\mathbb {S}^{d-1})$. We prove that any such solution belongs to the class $C^\infty (\mathbb {S}^{d-1})$. In particular, we show that all critical points associated with the sharp form of the corresponding adjoint Fourier restriction inequality on $\mathbb {S}^{d-1}$ are $C^\infty $-smooth. This extends previous work of Christ and Shao [4] to arbitrary dimensions and general even exponents and plays a key role in the companion paper [24].
A hybrid asymptotic-numerical method is developed to approximate the mean first passage time (MFPT) and the splitting probability for a Brownian particle in a bounded two-dimensional (2D) domain that contains absorbing disks, referred to as “traps”, of asymptotically small radii. In contrast to previous studies that required traps to be spatially well separated, we show how to readily incorporate the effect of a cluster of closely spaced traps by adapting a recently formulated least-squares approach in order to numerically solve certain local problems for the Laplacian near the cluster. We also provide new asymptotic formulae for the MFPT in 2D spatially periodic domains where a trap cluster is centred at the lattice points of an oblique Bravais lattice. Over all such lattices with fixed area for the primitive cell, and for each specific trap set, the average MFPT is smallest for a hexagonal lattice of traps.
This paper is concerned with the existence of solutions for a class of elliptic equations on the unit ball with zero Dirichlet boundary condition. The nonlinearity is supercritical in the sense of Trudinger–Moser. Using a suitable approximating scheme we obtain the existence of at least one positive solution.
An analysis is undertaken of the formation and stability of localised patterns in a 1D Schanckenberg model, with source terms in both the activator and inhibitor fields. The aim is to illustrate the connection between semi-strong asymptotic analysis and the theory of localised pattern formation within a pinning region created by a subcritical Turing bifurcation. A two-parameter bifurcation diagram of homogeneous, periodic and localised patterns is obtained numerically. A natural asymptotic scaling for semi-strong interaction theory is found where an activator source term \[a = O(\varepsilon )\] and the inhibitor source \[b = O({\varepsilon ^2})\], with ε2 being the diffusion ratio. The theory predicts a fold of spike solutions leading to onset of localised patterns upon increase of b from zero. Non-local eigenvalue arguments show that both branches emanating from the fold are unstable, with the higher intensity branch becoming stable through a Hopf bifurcation as b increases beyond the \[O(\varepsilon )\] regime. All analytical results are found to agree with numerics. In particular, the asymptotic expression for the fold is found to be accurate beyond its region of validity, and its extension into the pinning region is found to form the low b boundary of the so-called homoclinic snaking region. Further numerical results point to both sub and supercritical Hopf bifurcation and novel spikeinsertion dynamics.
Poroelastic effects have been of great interest in the seismic literature as they have been identified as a major cause of wave attenuation in heterogeneous porous media. The observed attenuation in the seismic wave can be explained in part by energy loss to fluid motion in the pores. On the other hand, it is known that the attenuation is particularly pronounced in stratified structures where the scale of spatial heterogeneity is much smaller than the seismic wavelength. Understanding of poroelastic effects on seismic wave attenuation in heterogeneous porous media has largely relied on numerical experiments. In this work, we present a homogenisation technique to obtain an upscaled viscoelastic model that captures seismic wave attenuation when the sub-seismic scale heterogeneity is periodic. The upscaled viscoelastic model directly relates seismic wave attenuation to the material properties of the heterogeneous structure. We verify our upscaled viscoelastic model against a full poroelastic model in numerical experiments. Our homogenisation technique suggests a new approach for solving coupled equations of motion.
In this paper, we study the initial-boundary value problem of a repulsion Keller–Segel system with a logarithmic sensitivity modelling the reinforced random walk. By establishing an energy–dissipation identity, we prove the existence of classical solutions in two dimensions as well as existence of weak solutions in the three-dimensional setting. Moreover, it is shown that the weak solutions enjoy an eventual regularity property, i.e., it becomes regular after certain time T > 0. An exponential convergence rate towards the spatially homogeneous steady states is obtained as well. We adopt a new approach developed recently by the author to study the eventual regularity. The argument is based on observation of the exponential stability of constant solutions in scaling-invariant spaces together with certain dissipative property of the global solutions in the same spaces.
We establish new Strichartz estimates for orthonormal families of initial data in the case of the wave, Klein–Gordon and fractional Schrödinger equations. Our estimates extend those of Frank–Sabin in the case of the wave and Klein–Gordon equations, and generalize work of Frank et al. and Frank–Sabin for the Schrödinger equation. Due to a certain technical barrier, except for the classical Schrödinger equation, the Strichartz estimates for orthonormal families of initial data have not previously been established up to the sharp summability exponents in the full range of admissible pairs. We obtain the optimal estimates in various notable cases and improve the previous results.
The main novelty of this paper is our derivation and use of estimates for weighted oscillatory integrals, which we combine with an approach due to Frank and Sabin. Our weighted oscillatory integral estimates are, in a certain sense, rather delicate endpoint versions of known dispersive estimates with power-type weights of the form $|\xi |^{-\lambda }$ or $(1 + |\xi |^2)^{-\lambda /2}$, where $\lambda \in \mathbb {R}$. We achieve optimal decay rates by considering such weights with appropriate $\lambda \in \mathbb {C}$. For the wave and Klein–Gordon equations, our weighted oscillatory integral estimates are new. For the fractional Schrödinger equation, our results overlap with prior work of Kenig–Ponce–Vega in a certain regime. Our contribution to the theory of weighted oscillatory integrals has also been influenced by earlier work of Carbery–Ziesler, Cowling et al., and Sogge–Stein.
Finally, we provide some applications of our new Strichartz estimates for orthonormal families of data to the theory of infinite systems of Hartree type, weighted velocity averaging lemmas for kinetic transport equations, and refined Strichartz estimates for data in Besov spaces.
We prove uniform Hölder regularity estimates for a transport-diffusion equation with a fractional diffusion operator and a general advection field in of bounded mean oscillation, as long as the order of the diffusion dominates the transport term at small scales; our only requirement is the smallness of the negative part of the divergence in some critical Lebesgue space. In comparison to a celebrated result by Silvestre, our advection field does not need to be bounded. A similar result can be obtained in the supercritical case if the advection field is Hölder continuous. Our proof is inspired by Kiselev and Nazarov and is based on the dual evolution technique. The idea is to propagate an atom property (i.e., localisation and integrability in Lebesgue spaces) under the dual conservation law, when it is coupled with the fractional diffusion operator.
This study considers a model for oncolytic virotherapy, as given by the reaction–diffusion–taxis system
\[\begin{eqnarray*} \left\{ \begin{array}{l} u_t = \Delta u - \nabla (u\nabla v)-\rho uz, \\ v_t = - (u+w)v, \\ w_t = D_w \Delta w - w + uz, \\ z_t = D_z \Delta z - z - uz + \beta w, \end{array} \right. \end{eqnarray*}\]
in a smoothly bounded domain Ω ⊂ ℝ2, with parameters Dw > 0, Dz > 0, β > 0 and ρ ⩾ 0.
Previous analysis has asserted that for all reasonably regular initial data, an associated no-flux type initial-boundary value problem admits a global classical solution, and that this solution is bounded if β < 1, whereas whenever β > 1 and $({1}/{|\Omega |})\int _\Omega u(\cdot ,0) > 1/(\beta -1)$, infinite-time blow-up occurs at least in the particular case when ρ = 0.
In order to provide an appropriate complement to this, the current study reveals that for any ρ ⩾ 0 and arbitrary β > 0, at each prescribed level γ ∈ (0, 1/(β − 1)+) one can identify an L∞-neighbourhood of the homogeneous distribution (u, v, w, z) ≡ (γ, 0, 0, 0) within which all initial data lead to globally bounded solutions that stabilize towards the constant equilibrium (u∞, 0, 0, 0) with some u∞ > 0.
By developing a Green's function representation for the solution of the boundary value problem we study existence, uniqueness, and qualitative properties (e.g., positivity or monotonicity) of solutions to these problems. We apply our methods to fractional order differential equations. We also demonstrate an application of our methodology both to convolution equations with nonlocal boundary conditions as well as those with a nonlocal term in the convolution equation itself.
In this paper, we derive and analyse mean-field models for the dynamics of groups of individuals undergoing a random walk. The random motion of individuals is only influenced by the perceived densities of the different groups present as well as the available space. All individuals have the tendency to stay within their own group and avoid the others. These interactions lead to the formation of aggregates in case of a single species and to segregation in the case of multiple species. We derive two different mean-field models, which are based on these interactions and weigh local and non-local effects differently. We discuss existence and stability properties of solutions for both models and illustrate the rich dynamics with numerical simulations.
Heat transport in granular and porous media occurs through conduction in the solid and radiation through the voids. By exploiting the separation of length scales between the small typical particles or voids and the large size of whole region, the method of multiple scales can be applied. For a purely diffusive system, this yields a problem on the macroscale with an effective conductivity, deduced by solving a ‘cell problem’ on the microscale. Here, we apply the method when radiation and conduction are both present; however, care must be taken to correctly handle the integral nature of the radiative boundary condition. Again, an effective conductivity is found by solving a ‘cell problem’ which, because of the non-linearity of radiative transfer, to be solved for each temperature value. We also incorporate modifications to the basic theory of multiple scales in order to deal with the non-local nature of the radiative boundary condition. We derive the multiple scales formulation of the problem and report on numerical comparisons between the homogenised problem and direct solution of the problem. We also compare the effective conductivity to that derived using Maxwell models and effective medium theory.
In this article, we prove the continuity of the horizontal gradient near a C1,Dini non-characteristic portion of the boundary for solutions to $\Gamma ^{0,{\rm Dini}}$ perturbations of horizontal Laplaceans as in (1.1) below, where the scalar term is in scaling critical Lorentz space L(Q, 1) with Q being the homogeneous dimension of the group. This result can be thought of both as a sharpening of the $\Gamma ^{1,\alpha }$ boundary regularity result in [4] as well as a subelliptic analogue of the main result in [1] restricted to linear equations.
We prove a Lusin type theorem for a certain class of linear partial differential operators G(D), reducing to [1, Theorem 1] when G(D) is the gradient. Moreover, we describe the structure of the set {G(D)f = F}, under assumptions of non-integrability on F, in terms of lower dimensional rectifiability and superdensity. Applications to Maxwell type system and to multivariable Cauchy–Riemann system are provided.
This paper is concerned with the asymptotic behaviour of solutions to a class of non-autonomous stochastic nonlinear wave equations with dispersive and viscosity dissipative terms driven by operator-type noise defined on the entire space $\mathbb {R}^n$. The existence, uniqueness, time-semi-uniform compactness and asymptotically autonomous robustness of pullback random attractors are proved in $H^1(\mathbb {R}^n)\times H^1(\mathbb {R}^n)$ when the growth rate of the nonlinearity has a subcritical range, the density of the noise is suitably controllable, and the time-dependent force converges to a time-independent function in some sense. The main difficulty to establish the time-semi-uniform pullback asymptotic compactness of the solutions in $H^1(\mathbb {R}^n)\times H^1(\mathbb {R}^n)$ is caused by the lack of compact Sobolev embeddings on $\mathbb {R}^n$, as well as the weak dissipativeness of the equations is surmounted at light of the idea of uniform tail-estimates and a spectral decomposition approach. The measurability of random attractors is proved by using an argument which considers two attracting universes developed by Wang and Li (Phys. D 382: 46–57, 2018).
We set up the sharp Trudinger–Moser inequality under arbitrary norms. Using this result and the
$L_{p}$
Busemann-Petty centroid inequality, we will provide a new proof to the sharp affine Trudinger–Moser inequalities without using the well-known affine Pólya–Szegö inequality.
In this paper, we consider an elliptic operator obtained as the superposition of a classical second-order differential operator and a nonlocal operator of fractional type. Though the methods that we develop are quite general, for concreteness we focus on the case in which the operator takes the form − Δ + ( − Δ)s, with s ∈ (0, 1). We focus here on symmetry properties of the solutions and we prove a radial symmetry result, based on the moving plane method, and a one-dimensional symmetry result, related to a classical conjecture by G.W. Gibbons.