To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper proves the energy equality for distributional solutions to fractional Navier-Stokes equations, which gives a new proof and covers the classical result of Galdi [Proc. Amer. Math. Soc. 147 (2019), 785–792].
Evaporation within porous media is both a multiscale and interface-driven process, since the phase change at the evaporating interfaces within the pores generates a vapour flow and depends on the transport of vapour through the porous medium. While homogenised models of flow and chemical transport in porous media allow multiscale processes to be modelled efficiently, it is not clear how the multiscale effects impact the interface conditions required for these homogenised models. In this paper, we derive a homogenised model, including effective interface conditions, for the motion of an evaporation front through a porous medium, using a combined homogenisation and boundary layer analysis. This analysis extends previous work for a purely diffusive problem to include both gas flow and the advective–diffusive transport of material. We investigate the effect that different microscale models describing the chemistry of the evaporation have on the homogenised interface conditions. In particular, we identify a new effective parameter, $\mathcal{L}$, the average microscale interface length, which modifies the effective evaporation rate in the homogenised model. Like the effective diffusivity and permeability of a porous medium, $\mathcal{L}$ may be found by solving a periodic cell problem on the microscale. We also show that the different microscale models of the interface chemistry result in fundamentally different fine-scale behaviour at, and near, the interface.
The invariant Galton–Watson (IGW) tree measures are a one-parameter family of critical Galton–Watson measures invariant with respect to a large class of tree reduction operations. Such operations include the generalized dynamical pruning (also known as hereditary reduction in a real tree setting) that eliminates descendant subtrees according to the value of an arbitrary subtree function that is monotone nondecreasing with respect to an isometry-induced partial tree order. We show that, under a mild regularity condition, the IGW measures are attractors of arbitrary critical Galton–Watson measures with respect to the generalized dynamical pruning. We also derive the distributions of height, length, and size of the IGW trees.
where $\Omega =\mathbb {R}^2$ or $\Omega =B_R(0)\subset \mathbb {R}^2$ supplemented with homogeneous Neumann boundary conditions, $\kappa _i,\chi _i>0,$$i=1,2$. The global existence remains open for the fully parabolic case as far as the author knows, while the existence of global solution was known for the parabolic-elliptic reduction with the second equation replaced by $0=\Delta v-v+u_1+u_2$ or $0=\Delta v+u_1+u_2$. In this paper, we prove that there exists a global solution if the initial masses satisfy the certain sub-criticality condition. The proof is based on a version of the Moser–Trudinger type inequality for system in two dimensions.
The frameworks of Baikov–Gazizov–Ibragimov (BGI) and Fushchich–Shtelen (FS) approximate symmetries are used to study symmetry properties of partial differential equations with a small parameter. In general, it is shown that unlike the case of ordinary differential equations (ODEs), unstable BGI point symmetries of unperturbed partial differential equations (PDEs) do not necessarily yield local approximate symmetries for the perturbed model. While some relations between the BGI and FS approaches can be established, the two methods yield different approximate symmetry classifications. Detailed classifications are presented for two nonlinear PDE families. The second family includes a one-dimensional wave equation describing the wave motion in a hyperelastic material with a single family of fibers. For this model, approximate symmetries can be used to compute approximate closed-form solutions. Wave breaking times are found numerically and using the approximate solutions, which yield comparable results.
Let $\sigma \in (0,\,2)$, $\chi ^{(\sigma )}(y):={\mathbf 1}_{\sigma \in (1,2)}+{\mathbf 1}_{\sigma =1} {\mathbf 1}_{y\in B(\mathbf {0},\,1)}$, where $\mathbf {0}$ denotes the origin of $\mathbb {R}^n$, and $a$ be a non-negative and bounded measurable function on $\mathbb {R}^n$. In this paper, we obtain the boundedness of the non-local elliptic operator
from the Sobolev space based on $\mathrm {BMO}(\mathbb {R}^n)\cap (\bigcup _{p\in (1,\infty )}L^p(\mathbb {R}^n))$ to the space $\mathrm {BMO}(\mathbb {R}^n)$, and from the Sobolev space based on the Hardy space $H^1(\mathbb {R}^n)$ to $H^1(\mathbb {R}^n)$. Moreover, for any $\lambda \in (0,\,\infty )$, we also obtain the unique solvability of the non-local elliptic equation $Lu-\lambda u=f$ in $\mathbb {R}^n$, with $f\in \mathrm {BMO}(\mathbb {R}^n)\cap (\bigcup _{p\in (1,\infty )}L^p(\mathbb {R}^n))$ or $H^1(\mathbb {R}^n)$, in the Sobolev space based on $\mathrm {BMO}(\mathbb {R}^n)$ or $H^1(\mathbb {R}^n)$. The boundedness and unique solvability results given in this paper are further devolvement for the corresponding results in the scale of the Lebesgue space $L^p(\mathbb {R}^n)$ with $p\in (1,\,\infty )$, established by H. Dong and D. Kim [J. Funct. Anal. 262 (2012), 1166–1199], in the endpoint cases of $p=1$ and $p=\infty$.
We consider positive solutions to a class of quasilinear elliptic problems involving the Hardy potential under zero Dirichlet boundary condition. Via moving plane method, proving a weak comparison principle, we prove symmetry and monotonicity properties for the solutions defined on strictly convex symmetric domains.
Narrow escape and narrow capture problems which describe the average times required to stop the motion of a randomly travelling particle within a domain have applications in various areas of science. While for general domains, it is known how the escape time decreases with the increase of the trap sizes, for some specific 2D and 3D domains, higher-order asymptotic formulas have been established, providing the dependence of the escape time on the sizes and locations of the traps. Such results allow the use of global optimisation to seek trap arrangements that minimise average escape times. In a recent paper (Iyaniwura (2021) SIAM Rev.63(3), 525–555), an explicit size- and trap location-dependent expansion of the average mean first passage time (MFPT) in a 2D elliptic domain was derived. The goal of this work is to systematically seek global minima of MFPT for $1\leq N\leq 50$ traps in elliptic domains using global optimisation techniques and compare the corresponding putative optimal trap arrangements for different values of the domain eccentricity. Further, an asymptotic formula for the average MFPT in elliptic domains with N circular traps of arbitrary sizes is derived, and sample optimal configurations involving non-equal traps are computed.
New classes of conditionally integrable systems of nonlinear reaction–diffusion equations are introduced. They are obtained by extending a well-known nonclassical symmetry of a scalar partial differential equation to a vector equation. New exact solutions of nonlinear predator–prey systems with cross-diffusion are constructed. Infinite dimensional classes of exact solutions are made available for such nonlinear systems. Some of these solutions decay towards extinction and some oscillate or spiral around an interior fixed point. It is shown that the conditionally integrable systems are closely related to the standard diffusive Lotka–Volterra system, but they have additional features.
We study the asymptotic behaviour of the periodically mixed Zaremba problem. We cover the part of the boundary by a chess board with a small period (square size) $\varepsilon$ and impose the Dirichlet condition on black and the Neumann condition on white squares. As $\varepsilon \to 0$, we get the effective boundary condition which is always of the Dirichlet type. The Dirichlet data on the boundary, however, depend on the ratio between the magnitudes of the two boundary values.
Symmetries and adjoint-symmetries are two fundamental (coordinate-free) structures of PDE systems. Recent work has developed several new algebraic aspects of adjoint-symmetries: three fundamental actions of symmetries on adjoint-symmetries; a Lie bracket on the set of adjoint-symmetries given by the range of a symmetry action; a generalised Noether (pre-symplectic) operator constructed from any non-variational adjoint-symmetry. These results are illustrated here by considering five examples of physically interesting nonlinear PDE systems – nonlinear reaction-diffusion equations, Navier-Stokes equations for compressible viscous fluid flow, surface-gravity water wave equations, coupled solitary wave equations and a nonlinear acoustic equation.
We devote this paper to study semi-stable nonconstant radial solutions of $S_k(D^2u)=w(\left \vert x \right \vert )g(u)$ on the Euclidean space $\mathbb {R}^n$. We establish pointwise estimates and necessary conditions for the existence of such solutions (not necessarily bounded) for this equation. For bounded solutions we estimate their asymptotic behaviour at infinity. All the estimates are given in terms of the spatial dimension $n$, the values of $k$ and the behaviour at infinity of the growth rate function of $w$.
In this paper, we consider the existence and stability of singular patterns in a fractional Ginzburg–Landau equation with a mean field. We prove the existence of three types of singular steady-state patterns (double fronts, single spikes, and double spikes) by solving their respective consistency conditions. In the case of single spikes, we prove the stability of single small spike solution for sufficiently large spatial period by studying an explicit non-local eigenvalue problem which is equivalent to the original eigenvalue problem. For the other solutions, we prove the instability by using the variational characterisation of eigenvalues. Finally, we present the results of some numerical computations of spike solutions based on the finite difference methods of Crank–Nicolson and Adams–Bashforth.
This note studies local integral gradient bounds for distributional solutions of a large class of partial differential inequalities with diffusion in divergence form and power-like first-order terms. The applications of these estimates are two-fold. First, we show the (sharp) global Hölder regularity of distributional semi-solutions to this class of diffusive PDEs with first-order terms having supernatural growth and right-hand side in a suitable Morrey class posed on a bounded and regular open set $\Omega$. Second, we provide a new proof of entire Liouville properties for inequalities with superlinear first-order terms without assuming any one-side bound on the solution for the corresponding homogeneous partial differential inequalities. We also discuss some extensions of the previous properties to problems arising in sub-Riemannian geometry and also to partial differential inequalities posed on noncompact complete Riemannian manifolds under appropriate area-growth conditions of the geodesic spheres, providing new results in both these directions. The methods rely on integral arguments and do not exploit maximum and comparison principles.
for any nonnegative functions $f\in L^{p}(\partial \mathbb {R}_+^{n})$, $g\in L^{q'}(\mathbb {R}_+^{n})$ and $p,\,\ q'\in (1,\,\infty )$, $\beta \geq 0$, $\alpha +\beta >1$ such that $\frac {n-1}{n}\frac {1}{p}+\frac {1}{q'}-\frac {\alpha +\beta -1}{n}=1$.
We prove the existence of all extremal functions for (0.1). We show that if $f$ and $g$ are extremal functions for (0.1) then both of $f$ and $g$ are radially decreasing. Moreover, we apply the regularity lifting method to obtain the smoothness of extremal functions. Finally, we derive the sufficient and necessary condition of the existence of any nonnegative nontrivial solutions for the Euler–Lagrange equations by using Pohozaev identity.
where $\Delta _{\Phi }u=\text {div}(\varphi (x,|\nabla u|)\nabla u)$ for a generalized N-function $\Phi (x,t)=\int _{0}^{|t|}\varphi (x,s)s\,ds$. We consider $\Omega \subset \mathbb {R}^{N}$ to be a smooth bounded domain that contains two disjoint open regions $\Omega _N$ and $\Omega _p$ such that $\overline {\Omega _N}\cap \overline {\Omega _p}=\emptyset$. The main feature of the problem $(P)$ is that the operator $-\Delta _{\Phi }$ behaves like $-\Delta _N$ on $\Omega _N$ and $-\Delta _p$ on $\Omega _p$. We assume the nonlinearity $f:\Omega \times \mathbb {R}\to \mathbb {R}$ of two different types, but both behave like $e^{\alpha |t|^{\frac {N}{N-1}}}$ on $\Omega _N$ and $|t|^{p^{*}-2}t$ on $\Omega _p$ as $|t|$ is large enough, for some $\alpha >0$ and $p^{*}=\frac {Np}{N-p}$ being the critical Sobolev exponent for $1< p< N$. In this context, for one type of nonlinearity $f$, we provide a multiplicity of solutions in a general smooth bounded domain and for another type of nonlinearity $f$, in an annular domain $\Omega$, we establish existence of multiple solutions for the problem $(P)$ that are non-radial and rotationally non-equivalent.
Infinitesimal symmetries of a partial differential equation (PDE) can be defined algebraically as the solutions of the linearisation (Frechet derivative) equation holding on the space of solutions to the PDE, and they are well-known to comprise a linear space having the structure of a Lie algebra. Solutions of the adjoint linearisation equation holding on the space of solutions to the PDE are called adjoint-symmetries. Their algebraic structure for general PDE systems is studied herein. This is motivated by the correspondence between variational symmetries and conservation laws arising from Noether’s theorem, which has a modern generalisation to non-variational PDEs, where infinitesimal symmetries are replaced by adjoint-symmetries, and variational symmetries are replaced by multipliers (adjoint-symmetries satisfying a certain Euler-Lagrange condition). Several main results are obtained. Symmetries are shown to have three different linear actions on the linear space of adjoint-symmetries. These linear actions are used to construct bilinear adjoint-symmetry brackets, one of which is a pull-back of the symmetry commutator bracket and has the properties of a Lie bracket. The brackets do not use or require the existence of any local variational structure (Hamiltonian or Lagrangian) and thus apply to general PDE systems. One of the symmetry actions is shown to encode a pre-symplectic (Noether) operator, which leads to the construction of symplectic 2-form and Poisson bracket for evolution systems. The generalised KdV equation in potential form is used to illustrate all of the results.
In this paper, we establish gradient continuity for solutions to
\[ (\partial_t - \operatorname{div}(A(x) \nabla ))^{s} u =f,\quad s \in (1/2, 1), \]
when $f$ belongs to the scaling critical function space $L\left (\frac {n+2}{2s-1}, 1\right )$. Our main results theorems 1.1 and 1.2 can be seen as a nonlocal generalization of a well-known result of Stein in the context of fractional heat type operators and sharpen some of the previous gradient continuity results which deal with $f$ in subcritical spaces. Our proof is based on an appropriate adaptation of compactness arguments, which has its roots in a fundamental work of Caffarelli in [13].
In this work we study the Cauchy problem in Gevrey spaces for a generalized class of equations that contains the case $b=0$ of the $b$-equation. For the generalized equation, we prove that it is locally well-posed for initial data in Gevrey spaces. Moreover, as we move to global well-posedness, we show that for a particular choice of the parameter in the equation the local solution is global analytic in both time and spatial variables.
For $N\geq 2$, a bounded smooth domain $\Omega$ in $\mathbb {R}^{N}$, and $g_0,\, V_0 \in L^{1}_{loc}(\Omega )$, we study the optimization of the first eigenvalue for the following weighted eigenvalue problem:
\[ -\Delta_p \phi + V |\phi|^{p-2}\phi = \lambda g |\phi|^{p-2}\phi \text{ in } \Omega, \quad \phi=0 \text{ on } \partial \Omega, \]
where $g$ and $V$ vary over the rearrangement classes of $g_0$ and $V_0$, respectively. We prove the existence of a minimizing pair $(\underline {g},\,\underline {V})$ and a maximizing pair $(\overline {g},\,\overline {V})$ for $g_0$ and $V_0$ lying in certain Lebesgue spaces. We obtain various qualitative properties such as polarization invariance, Steiner symmetry of the minimizers as well as the associated eigenfunctions for the case $p=2$. For annular domains, we prove that the minimizers and the corresponding eigenfunctions possess the foliated Schwarz symmetry.