We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper focuses on the vanishing limit problem for the three-dimensional incompressible Phan-Thien–Tanner (PTT) system, which is commonly used to describe the dynamic properties of polymeric fluids. Our purpose is to show the relation of the PTT system to the well-known Oldroyd-B system (with or without damping mechanism). The suitable a priori estimates and global existence of strong solutions are established for the PTT system with small initial data. Taking advantage of uniform energy and decay estimates for the PTT system with respect to time $t$ and coefficients $a$ and $b$, then allows us to justify in particular the vanishing limit for all time. More precisely, we prove that the solution $(u,\,\tau )$ of PTT system with $0\leq b\leq Ca$ converges globally in time to some limit $(\widetilde {u},\,\widetilde {\tau })$ in a suitable Sobolev space when $a$ and $b$ go to zero simultaneously (or, only $b$ goes to zero). We may check that $(\widetilde {u},\,\widetilde {\tau })$ is indeed a global solution of the corresponding Oldroyd-B system. In addition, a rate of convergence involving explicit norm will be obtained. As a byproduct, similar results are also true for the local a priori estimates in large norm.
The problem of inverting the total divergence operator is central to finding components of a given conservation law. This might not be taxing for a low-order conservation law of a scalar partial differential equation, but integrable systems have conservation laws of arbitrarily high order that must be found with the aid of computer algebra. Even low-order conservation laws of complex systems can be hard to find and invert. This paper describes a new, efficient approach to the inversion problem. Two main tools are developed: partial Euler operators and partial scalings. These lead to a line integral formula for the inversion of a total derivative and a procedure for inverting a given total divergence concisely.
We establish a priori bounds, existence and qualitative behaviour of positive radial solutions in annuli for a class of nonlinear systems driven by Pucci extremal operators and Lane-Emden coupling in the superlinear regime. Our approach is purely nonvariational. It is based on the shooting method, energy functionals, spectral properties, and on a suitable criteria for locating critical points in annular domains through the moving planes method that we also prove.
Motivated by some models of pattern formation involving an unoriented director field in the plane, we study a family of unoriented counterparts to the Aviles–Giga functional. We introduce a nonlinear $\operatorname {\mathrm {curl}}$ operator for such unoriented vector fields as well as a family of even entropies which we call ‘trigonometric entropies’. Using these tools, we show two main theorems which parallel some results in the literature on the classical Aviles–Giga energy. The first is a compactness result for sequences of configurations with uniformly bounded energies. The second is a complete characterization of zero-states, that is, the limit configurations when the energies go to 0. These are Lipschitz continuous away from a locally finite set of points, near which they form either a vortex pattern or a disclination with degree 1/2. The proof is based on a combination of regularity theory together with techniques coming from the study of the Ginzburg–Landau energy. Our methods provide alternative proofs in the classical Aviles–Giga context.
This work is devoted to the study of the sub-critical case of an anisotropic fully parabolic Keller–Segel chemotaxis system. We prove the existence of nonnegative weak solutions of (1.1) without restriction on the size of the initial data.
The aim of this paper is to study the dimension reduction analysis of an elastic plate with small thickness reinforced with increasing number of thin ribbons developing fractal geometry. We prove the $\Gamma $-convergence of the energy functionals to a two-dimensional effective energy including singular terms supported within the Sierpinski carpet.
In this paper, we consider the chemotaxis-Navier-Stokes model with realistic boundary conditions matching the experiments of Hillesdon, Kessler et al. in a two-dimensional periodic strip domain. For the lower boundary, we impose the usual homogeneous Neumann-Neumann-Dirichlet boundary condition. While, for the upper boundary, since it is open to the atmosphere, we consider three kinds of different mixed non-homogeneous boundary conditions, that is, (i) Neumann-Dirichlet-Navier slip boundary condition; (ii) Zero flux-Dirichlet-Navier slip boundary condition; (iii) Zero flux-Robin-Navier slip boundary condition. For boundary conditions (i) and (iii), the existence and uniqueness of global classical solutions for any initial data and any large chemotactic sensitivity coefficient is established, and for boundary condition (ii), the existence and uniqueness of global classical solutions for any initial data and small chemotactic sensitivity coefficient is proved.
In this paper, we study the asymptotic profiles of positive solutions for diffusive logistic equations. The aim is to study the sharp effect of linear growth and nonlinear function. Both the classical reaction-diffusion equation and nonlocal dispersal equation are investigated. Our main results reveal that the linear and nonlinear parts of reaction term play quite different roles in the study of positive solutions.
This paper proves the energy equality for distributional solutions to fractional Navier-Stokes equations, which gives a new proof and covers the classical result of Galdi [Proc. Amer. Math. Soc. 147 (2019), 785–792].
Evaporation within porous media is both a multiscale and interface-driven process, since the phase change at the evaporating interfaces within the pores generates a vapour flow and depends on the transport of vapour through the porous medium. While homogenised models of flow and chemical transport in porous media allow multiscale processes to be modelled efficiently, it is not clear how the multiscale effects impact the interface conditions required for these homogenised models. In this paper, we derive a homogenised model, including effective interface conditions, for the motion of an evaporation front through a porous medium, using a combined homogenisation and boundary layer analysis. This analysis extends previous work for a purely diffusive problem to include both gas flow and the advective–diffusive transport of material. We investigate the effect that different microscale models describing the chemistry of the evaporation have on the homogenised interface conditions. In particular, we identify a new effective parameter, $\mathcal{L}$, the average microscale interface length, which modifies the effective evaporation rate in the homogenised model. Like the effective diffusivity and permeability of a porous medium, $\mathcal{L}$ may be found by solving a periodic cell problem on the microscale. We also show that the different microscale models of the interface chemistry result in fundamentally different fine-scale behaviour at, and near, the interface.
The invariant Galton–Watson (IGW) tree measures are a one-parameter family of critical Galton–Watson measures invariant with respect to a large class of tree reduction operations. Such operations include the generalized dynamical pruning (also known as hereditary reduction in a real tree setting) that eliminates descendant subtrees according to the value of an arbitrary subtree function that is monotone nondecreasing with respect to an isometry-induced partial tree order. We show that, under a mild regularity condition, the IGW measures are attractors of arbitrary critical Galton–Watson measures with respect to the generalized dynamical pruning. We also derive the distributions of height, length, and size of the IGW trees.
where $\Omega =\mathbb {R}^2$ or $\Omega =B_R(0)\subset \mathbb {R}^2$ supplemented with homogeneous Neumann boundary conditions, $\kappa _i,\chi _i>0,$$i=1,2$. The global existence remains open for the fully parabolic case as far as the author knows, while the existence of global solution was known for the parabolic-elliptic reduction with the second equation replaced by $0=\Delta v-v+u_1+u_2$ or $0=\Delta v+u_1+u_2$. In this paper, we prove that there exists a global solution if the initial masses satisfy the certain sub-criticality condition. The proof is based on a version of the Moser–Trudinger type inequality for system in two dimensions.
The frameworks of Baikov–Gazizov–Ibragimov (BGI) and Fushchich–Shtelen (FS) approximate symmetries are used to study symmetry properties of partial differential equations with a small parameter. In general, it is shown that unlike the case of ordinary differential equations (ODEs), unstable BGI point symmetries of unperturbed partial differential equations (PDEs) do not necessarily yield local approximate symmetries for the perturbed model. While some relations between the BGI and FS approaches can be established, the two methods yield different approximate symmetry classifications. Detailed classifications are presented for two nonlinear PDE families. The second family includes a one-dimensional wave equation describing the wave motion in a hyperelastic material with a single family of fibers. For this model, approximate symmetries can be used to compute approximate closed-form solutions. Wave breaking times are found numerically and using the approximate solutions, which yield comparable results.
Let $\sigma \in (0,\,2)$, $\chi ^{(\sigma )}(y):={\mathbf 1}_{\sigma \in (1,2)}+{\mathbf 1}_{\sigma =1} {\mathbf 1}_{y\in B(\mathbf {0},\,1)}$, where $\mathbf {0}$ denotes the origin of $\mathbb {R}^n$, and $a$ be a non-negative and bounded measurable function on $\mathbb {R}^n$. In this paper, we obtain the boundedness of the non-local elliptic operator
from the Sobolev space based on $\mathrm {BMO}(\mathbb {R}^n)\cap (\bigcup _{p\in (1,\infty )}L^p(\mathbb {R}^n))$ to the space $\mathrm {BMO}(\mathbb {R}^n)$, and from the Sobolev space based on the Hardy space $H^1(\mathbb {R}^n)$ to $H^1(\mathbb {R}^n)$. Moreover, for any $\lambda \in (0,\,\infty )$, we also obtain the unique solvability of the non-local elliptic equation $Lu-\lambda u=f$ in $\mathbb {R}^n$, with $f\in \mathrm {BMO}(\mathbb {R}^n)\cap (\bigcup _{p\in (1,\infty )}L^p(\mathbb {R}^n))$ or $H^1(\mathbb {R}^n)$, in the Sobolev space based on $\mathrm {BMO}(\mathbb {R}^n)$ or $H^1(\mathbb {R}^n)$. The boundedness and unique solvability results given in this paper are further devolvement for the corresponding results in the scale of the Lebesgue space $L^p(\mathbb {R}^n)$ with $p\in (1,\,\infty )$, established by H. Dong and D. Kim [J. Funct. Anal. 262 (2012), 1166–1199], in the endpoint cases of $p=1$ and $p=\infty$.
We consider positive solutions to a class of quasilinear elliptic problems involving the Hardy potential under zero Dirichlet boundary condition. Via moving plane method, proving a weak comparison principle, we prove symmetry and monotonicity properties for the solutions defined on strictly convex symmetric domains.
Narrow escape and narrow capture problems which describe the average times required to stop the motion of a randomly travelling particle within a domain have applications in various areas of science. While for general domains, it is known how the escape time decreases with the increase of the trap sizes, for some specific 2D and 3D domains, higher-order asymptotic formulas have been established, providing the dependence of the escape time on the sizes and locations of the traps. Such results allow the use of global optimisation to seek trap arrangements that minimise average escape times. In a recent paper (Iyaniwura (2021) SIAM Rev.63(3), 525–555), an explicit size- and trap location-dependent expansion of the average mean first passage time (MFPT) in a 2D elliptic domain was derived. The goal of this work is to systematically seek global minima of MFPT for $1\leq N\leq 50$ traps in elliptic domains using global optimisation techniques and compare the corresponding putative optimal trap arrangements for different values of the domain eccentricity. Further, an asymptotic formula for the average MFPT in elliptic domains with N circular traps of arbitrary sizes is derived, and sample optimal configurations involving non-equal traps are computed.
New classes of conditionally integrable systems of nonlinear reaction–diffusion equations are introduced. They are obtained by extending a well-known nonclassical symmetry of a scalar partial differential equation to a vector equation. New exact solutions of nonlinear predator–prey systems with cross-diffusion are constructed. Infinite dimensional classes of exact solutions are made available for such nonlinear systems. Some of these solutions decay towards extinction and some oscillate or spiral around an interior fixed point. It is shown that the conditionally integrable systems are closely related to the standard diffusive Lotka–Volterra system, but they have additional features.
We study the asymptotic behaviour of the periodically mixed Zaremba problem. We cover the part of the boundary by a chess board with a small period (square size) $\varepsilon$ and impose the Dirichlet condition on black and the Neumann condition on white squares. As $\varepsilon \to 0$, we get the effective boundary condition which is always of the Dirichlet type. The Dirichlet data on the boundary, however, depend on the ratio between the magnitudes of the two boundary values.
Symmetries and adjoint-symmetries are two fundamental (coordinate-free) structures of PDE systems. Recent work has developed several new algebraic aspects of adjoint-symmetries: three fundamental actions of symmetries on adjoint-symmetries; a Lie bracket on the set of adjoint-symmetries given by the range of a symmetry action; a generalised Noether (pre-symplectic) operator constructed from any non-variational adjoint-symmetry. These results are illustrated here by considering five examples of physically interesting nonlinear PDE systems – nonlinear reaction-diffusion equations, Navier-Stokes equations for compressible viscous fluid flow, surface-gravity water wave equations, coupled solitary wave equations and a nonlinear acoustic equation.
We devote this paper to study semi-stable nonconstant radial solutions of $S_k(D^2u)=w(\left \vert x \right \vert )g(u)$ on the Euclidean space $\mathbb {R}^n$. We establish pointwise estimates and necessary conditions for the existence of such solutions (not necessarily bounded) for this equation. For bounded solutions we estimate their asymptotic behaviour at infinity. All the estimates are given in terms of the spatial dimension $n$, the values of $k$ and the behaviour at infinity of the growth rate function of $w$.