We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we study the Dirichlet problem of Hessian quotient equations of the form $S_k(D^2u)/S_l(D^2u)=g(x)$ in exterior domains. For $g\equiv \mbox {const.}$, we obtain the necessary and sufficient conditions on the existence of radially symmetric solutions. For g being a perturbation of a generalized symmetric function at infinity, we obtain the existence of viscosity solutions by Perron’s method. The key technique we develop is the construction of sub- and supersolutions to deal with the non-constant right-hand side g.
In this work, we carry out an analytical and numerical investigation of travelling waves representing arced vegetation patterns on sloped terrains. These patterns are reported to appear also in ecosystems which are not water deprived; therefore, we study the hypothesis that their appearance is due to plant–soil negative feedback, namely due to biomass-(auto)toxicity interactions.
To this aim, we introduce a reaction-diffusion-advection model describing the dynamics of vegetation biomass and toxicity which includes the effect of sloped terrains on the spatial distribution of these variables. Our analytical investigation shows the absence of Turing patterns, whereas travelling waves (moving uphill in the slope direction) emerge. Investigating the corresponding dispersion relation, we provide an analytic expression for the asymptotic speed of the wave. Numerical simulations not only just confirm this analytical quantity but also reveal the impact of toxicity on the structure of the emerging travelling pattern.
Our analysis represents a further step in understanding the mechanisms behind relevant plants‘ spatial distributions observed in real life. In particular, since vegetation patterns (both stationary and transient) are known to play a crucial role in determining the underlying ecosystems’ resilience, the framework presented here allows us to better understand the emergence of such structures to a larger variety of ecological scenarios and hence improve the relative strategies to ensure the ecosystems’ resilience.
This article is devoted to a general class of one-dimensional NLS problems with a cubic nonlinearity. The question of obtaining scattering, global in time solutions for such problems has attracted a lot of attention in recent years, and many global well-posedness results have been proved for a number of models under the assumption that the initial data are both small and localized. However, except for the completely integrable case, no such results have been known for small but not necessarily localized initial data.
In this article, we introduce a new, nonperturbative method to prove global well-posedness and scattering for $L^2$ initial data which are small and nonlocalized. Our main structural assumption is that our nonlinearity is defocusing. However, we do not assume that our problem has any exact conservation laws. Our method is based on a robust reinterpretation of the idea of Interaction Morawetz estimates, developed almost 20 years ago by the I-team.
In terms of scattering, we prove that our global solutions satisfy both global $L^6$ Strichartz estimates and bilinear $L^2$ bounds. This is a Galilean invariant result, which is new even for the classical defocusing cubic NLS.1 There, by scaling, our result also admits a large data counterpart.
This paper is devoted to the study of the propagation dynamics of a mutualistic model of mistletoes and birds with nonlocal dispersal. By applying the theory of asymptotic speeds of spread and travelling waves for monotone semiflows, we establish the existence of the asymptotic spreading speed $c^*$, the existence of travelling wavefronts with the wave speed $c\ge c^*$ and the nonexistence of travelling wavefronts with $c\lt c^*$. It turns out that the spreading speed coincides with the minimal wave speed of travelling wavefronts. Moreover, some lower and upper bound estimates of the spreading speed $c^*$ are provided.
We provide a natural simple argument using anistropic flows to prove the existence of weak solutions to Lutwak’s $L^p$-Minkowski problem on $S^n$ which were obtained by other methods.
The asymptotic mean value Laplacian—AMV Laplacian—extends the Laplace operator from $\mathbb {R}^n$ to metric measure spaces through limits of averaging integrals. The AMV Laplacian is however not a symmetric operator in general. Therefore, we consider a symmetric version of the AMV Laplacian, and focus lies on when the symmetric and non-symmetric AMV Laplacians coincide. Besides Riemannian and 3D contact sub-Riemannian manifolds, we show that they are identical on a large class of metric measure spaces, including locally Ahlfors regular spaces with suitably vanishing distortion. In addition, we study the context of weighted domains of $\mathbb {R}^n$—where the two operators typically differ—and provide explicit formulae for these operators, including points where the weight vanishes.
where $a, \epsilon, \eta \gt 0$, q is L2-subcritical, p is L2-supercritical, $\lambda\in \mathbb{R}$ is an unknown parameter that appears as a Lagrange multiplier and h is a positive and continuous function. It is proved that the numbers of normalized solutions are at least the numbers of global maximum points of h when ϵ is small enough. The solutions obtained are local minimizers and probably not ground state solutions for the lack of symmetry of the potential h. Secondly, the stability of several different sets consisting of the local minimizers is analysed. Compared with the results of the corresponding autonomous equation, the appearance of the potential h increases the number of the local minimizers and the number of the stable sets. In particular, our results cover the Sobolev critical case $p=2N/(N-2)$.
Let $G=(V, E)$ be a locally finite graph with the vertex set V and the edge set E, where both V and E are infinite sets. By dividing the graph G into a sequence of finite subgraphs, the existence of a sequence of local solutions to several equations involving the p-Laplacian and the poly-Laplacian systems is confirmed on each subgraph, and the global existence for each equation on graph G is derived by the convergence of these local solutions. Such results extend the recent work of Grigor’yan, Lin and Yang [J. Differential Equations, 261 (2016), 4924–4943; Rev. Mat. Complut., 35 (2022), 791–813]. The method in this paper also provides an idea for investigating similar problems on infinite graphs.
In this paper, we are concerned with the non-existence of positive solutions of a Hartree–Poisson system:
\begin{equation*}\left\{\begin{aligned}&-\Delta u=\left(\frac{1}{|x|^{n-2}}\ast v^p\right)v^{p-1},\quad u \gt 0\ \text{in} \ \mathbb{R}^{n},\\&-\Delta v=\left(\frac{1}{|x|^{n-2}}\ast u^q\right)u^{q-1},\quad v \gt 0\ \text{in} \ \mathbb{R}^{n},\end{aligned}\right.\end{equation*}
where $n \geq3$ and $\min\{p,q\} \gt 1$. We prove that the system has no positive solution under a Serrin-type condition. In addition, the system has no positive radial classical solution in a Sobolev-type subcritical case. In addition, the system has no positive solution with some integrability in this Sobolev-type subcritical case. Finally, the relation between a Liouville theorem and the estimate of boundary blowing-up rates is given.
where $q\ge p\ge2$, r > q, $0 \lt \mu \lt N$ and $w,f \in L^1_{\rm loc}(\mathbb{R}^N)$ are two non-negative functions such that $w(x) \le C_1|x|^a$ and $f(x) \ge C_2|x|^b$ for all $|x| \gt R_0$, where $R_0,C_1,C_2 \gt 0$ and $a,b\in\mathbb{R}$. Under some appropriate assumptions on p, q, r, µ, a, b and N, we prove various Liouville-type theorems for weak solutions which are stable or stable outside a compact set of $\mathbb{R}^N$. First, we establish the standard integral estimates via stability property to derive the non-existence results for stable weak solutions. Then, by means of the Pohožaev identity, we deduce the Liouville-type theorem for weak solutions which are stable outside a compact set.
We consider the long-time behaviour of a West Nile virus (WNv) model consisting of a reaction–diffusion system with free boundaries. Such a model describes the spreading of WNv with the free boundary representing the expanding front of the infected region, which is a time-dependent interval $[g(t), h(t)]$ in the model (Lin and Zhu, Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary. J. Math. Biol. 75, 1381–1409, 2017). The asymptotic spreading speed of the front has been determined in Wang et al. (Spreading speed for a West Nile virus model with free boundary. J. Math. Biol. 79, 433–466, 2019) by making use of the associated semi-wave solution, namely $\lim _{t\to \infty } h(t)/t=\lim _{t\to \infty }[\!-g(t)/t]=c_\nu$, with $c_\nu$ the speed of the semi-wave solution. In this paper, by employing new techniques, we significantly improve the estimate in Wang et al. (Spreading speed for a West Nile virus model with free boundary. J. Math. Biol. 79, 433–466, 2019): we show that $h(t)-c_\nu t$ and $g(t)+c_\nu t$ converge to some constants as $t\to \infty$, and the solution of the model converges to the semi-wave solution. The results also apply to a wide class of analogous Ross–MacDonold epidemic models.
This paper focuses on the Cauchy problem for a one-dimensional quasilinear hyperbolic–parabolic coupled system with initial data given on a line of parabolicity. The coupled system is derived from the Poiseuille flow of full Ericksen–Leslie model in the theory of nematic liquid crystals, which incorporates the crystal and liquid properties of the materials. The main difficulty comes from the degeneracy of the hyperbolic equation, which makes that the system is not continuously differentiable and then the classical methods for the strictly hyperbolic–parabolic coupled systems are invalid. With a choice of a suitable space for the unknown variable of the parabolic equation, we first solve the degenerate hyperbolic problem in a partial hodograph plane and express the smooth solution in terms of the original variables. Based on the smooth solution of the hyperbolic equation, we then construct an iterative sequence for the unknown variable of the parabolic equation by the fundamental solution of the heat equation. Finally, we verify the uniform convergence of the iterative sequence in the selected function space and establish the local existence and uniqueness of classical solutions to the degenerate coupled problem.
We consider the two-dimensional minimisation problem for $\inf \{ E_a(\varphi ):\varphi \in H^1(\mathbb {R}^2)\ \text {and}\ \|\varphi \|_2^2=1\}$, where the energy functional $ E_a(\varphi )$ is a cubic-quintic Schrödinger functional defined by $E_a(\varphi ):=\tfrac 12\int _{\mathbb {R}^2}|\nabla \varphi |^2\,dx-\tfrac 14a\int _{\mathbb {R}^2}|\varphi |^4\,dx+\tfrac 16a^2\int _{\mathbb {R}^2}|\varphi |^6\,dx$. We study the existence and asymptotic behaviour of the ground state. The ground state $\varphi _{a}$ exists if and only if the $L^2$ mass a satisfies $a>a_*={\lVert Q\rVert }^2_2$, where Q is the unique positive radial solution of $-\Delta u+ u-u^3=0$ in $\mathbb {R}^2$. We show the optimal vanishing rate $\int _{\mathbb {R}^2}|\nabla \varphi _{a}|^2\,dx\sim (a-a_*)$ as $a\searrow a_*$ and obtain the limit profile.
We consider a parabolic-parabolic chemotaxis system with singular chemotactic sensitivity and source functions, which is originally introduced by Short et al to model the spatio-temporal behaviour of urban criminal activities with the particular value of the chemotactic sensitivity parameter $\chi =2$. The available analytical findings for this urban crime model including $\chi =2$ are restricted either to one-dimensional setting, or to initial data and source functions with appropriate smallness, or to initial data and source functions with some radial symmetry. In the present work, our first result asserts that for any $\chi \gt 0$ the initial-boundary value problem of this urban crime model possesses a global generalised solution in the two-dimensional setting, without imposing any small or radial conditions on initial data and source functions. Our second result presents the asymptotic behaviour of such solution, under some additional assumptions on source functions.
We give a comprehensive study of the 3D Navier–Stokes–Brinkman–Forchheimer equations in a bounded domain endowed with the Dirichlet boundary conditions and non-autonomous external forces. This study includes the questions related with the regularity of weak solutions, their dissipativity in higher energy spaces and the existence of the corresponding uniform attractors
This paper deals with some Monge–Ampère type equations involving the gradient that are elliptic in the framework of convex functions. First, we show that such equations may be obtained by minimizing a suitable functional. Moreover, we investigate a P-function associated with the solution to a boundary value problem of our generalized Monge–Ampère equation in a bounded convex domain. It will be shown that this P-function attains its maximum value on the boundary of the underlying domain. Furthermore, we show that such a P-function is actually identically constant when the underlying domain is a ball. Therefore, our result provides a best possible maximum principles in the sense of L. E. Payne. Finally, in case of dimension 2, we prove that this P-function also attains its minimum value on the boundary of the underlying domain. As an application, we will show that the solvability of a Serrin’s type overdetermined problem for our generalized Monge–Ampère type equation forces the underlying domain to be a ball.
Multidimensional linear hyperbolic systems with constraints and delay are considered. The existence and uniqueness of solutions for rough data are established using Friedrichs method. With additional regularity and compatibility on the initial data and initial history, the stability of such systems are discussed. Under suitable assumptions on the coefficient matrices, we establish standard or regularity-loss type decay estimates. For data that are integrable, better decay rates are provided. The results are applied to the wave, Timoshenko, and linearized Euler–Maxwell systems with delay.
on bounded domains, known in the literature as the Whitham–Broer–Kaup system. The well-posedness of the problem, under suitable boundary conditions, is addressed, and it is shown to depend on the sign of the number
\[ \varkappa=\alpha-\beta^2. \]
In particular, existence and uniqueness occur if and only if $\varkappa >0$. In which case, an explicit representation for the solutions is given. Nonetheless, for the case $\varkappa \leq 0$ we have uniqueness in the class of strong solutions, and sufficient conditions to guarantee exponential instability are provided.
In this paper, we prove some weighted sharp inequalities of Trudinger–Moser type. The weights considered here have a logarithmic growth. These inequalities are completely new and are established in some new Sobolev spaces where the norm is a mixture of the norm of the gradient in two different Lebesgue spaces. This fact allowed us to prove a very interesting result of sharpness for the case of doubly exponential growth at infinity. Some improvements of these inequalities for the weakly convergent sequences are also proved using a version of the Concentration-Compactness principle of P.L. Lions. Taking profit of these inequalities, we treat in the last part of this work some elliptic quasilinear equation involving the weighted $(N,q)-$Laplacian operator where $1 < q < N$ and a nonlinearities enjoying a new type of exponential growth condition at infinity.
In this work, we study an elliptic problem involving an operator of mixed order with both local and nonlocal aspects, and in either the presence or the absence of a singular nonlinearity. We investigate existence or nonexistence properties, power- and exponential-type Sobolev regularity results, and the boundary behaviour of the weak solution, in the light of the interplay between the summability of the datum and the power exponent in singular nonlinearities.