We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove a local gradient estimate for positive eigenfunctions of the $\mathcal {L}$-operator on conformal solitons given by a general conformal vector field. As an application, we obtain a Liouville type theorem for $\mathcal {L} u=0$, which improves the one of Li and Sun [‘Gradient estimate for the positive solutions of $\mathcal Lu = 0$ and $\mathcal Lu ={\partial u}/{\partial t}$ on conformal solitons’, Acta Math. Sin. (Engl. Ser.)37(11) (2021), 1768–1782]. We also consider applications where manifolds are special conformal solitons and obtain a better Liouville type theorem in the case of self-shrinkers.
where $n\geq3$, $0 \lt p\leq1$. By establishing an equivalent integral equation, we give a lower bound of the Kelvin transformation $\bar{u}$. Then, by constructing a new comparison function, we apply the maximum principle based on comparisons and the method of moving planes to obtain that u only depends on xn. Based on this, we prove the non-existence of non-negative solutions.
This article studies the dynamical behaviour of classical solutions of a hyperbolic system of balance laws, derived from a chemotaxis model with logarithmic sensitivity, with time-dependent boundary conditions. It is shown that under suitable assumptions on the boundary data, solutions starting in the $H^2$-space exist globally in time and the differences between the solutions and their corresponding boundary data converge to zero as time goes to infinity. There is no smallness restriction on the magnitude of the initial perturbations. Moreover, numerical simulations show that the assumptions on the boundary data are necessary for the above-mentioned results to hold true. In addition, numerical results indicate that the solutions converge asymptotically to time-periodic states if the boundary data are time-periodic.
This paper studies the spatio-temporal dynamics of a diffusive plant-sulphide model with toxicity delay. More specifically, the effects of discrete delay and distributed delay on the dynamics are explored, respectively. The deep analysis of eigenvalues indicates that both diffusion and delay can induce Hopf bifurcations. The normal form theory is used to set up an exact formula that determines the properties of Hopf bifurcation in a diffusive plant-sulphide model. A sufficiently small discrete delay does not affect the stability and a sufficiently large discrete delay destabilizes the system. Nonetheless, a sufficiently small or large distributed delay does not affect the stability. Both delays cause instability by inducing Hopf bifurcation rather than Turing bifurcation.
We study the Cauchy problem on the real line for the nonlocal Fisher-KPP equation in one spatial dimension,
\begin{equation*} u_t = D u_{xx} + u(1-\phi *u), \end{equation*}
where $\phi *u$ is a spatial convolution with the top hat kernel, $\phi (y) \equiv H\left (\frac{1}{4}-y^2\right )$. After observing that the problem is globally well-posed, we demonstrate that positive, spatially periodic solutions bifurcate from the spatially uniform steady state solution $u=1$ as the diffusivity, $D$, decreases through $\Delta _1 \approx 0.00297$ (the exact value is determined in Section 3). We explicitly construct these spatially periodic solutions as uniformly valid asymptotic approximations for $D \ll 1$, over one wavelength, via the method of matched asymptotic expansions. These consist, at leading order, of regularly spaced, compactly supported regions with width of $O(1)$ where $u=O(1)$, separated by regions where $u$ is exponentially small at leading order as $D \to 0^+$. From numerical solutions, we find that for $D \geq \Delta _1$, permanent form travelling waves, with minimum wavespeed, $2 \sqrt{D}$, are generated, whilst for $0 \lt D \lt \Delta _1$, the wavefronts generated separate the regions where $u=0$ from a region where a steady periodic solution is created via a distinct periodic shedding mechanism acting immediately to the rear of the advancing front, with this mechanism becoming more pronounced with decreasing $D$. The structure of these transitional travelling wave forms is examined in some detail.
In this paper, we deal with a weighted eigenvalue problem for the anisotropic $(p,q)$-Laplacian with Dirichlet boundary conditions. We study the main properties of the first eigenvalue and a reverse Hölder type inequality for the corresponding eigenfunctions.
This article offers an advanced and novel investigation into the intricate propagation dynamics of the Belousov–Zhabotinsky system with non-local delayed interaction, which exhibits dynamical transition structure from bistable to monostable. We first solved the enduring open problem concerning the existence, uniqueness and the speed sign of the bistable travelling waves. In the monostable case, we developed and derived new results for the minimal wave speed selection, which, as an application, further improved the existing investigations on pushed and pulled wavefronts. Our results can provide new estimate to the minimal speed as well as to the determinacy of the transition parameters. Moreover, these results can be directly applied to standard localised models and delayed reaction diffusion models by choosing appropriate kernel functions.
where $d \geq 1$, $\mu \in \mathbb{R}$ and $0 \lt \sigma \lt \infty$ if $1 \leq d \leq 4$ and $0 \lt \sigma \lt 4/(d-4)$ if $d \geq 5$. In the mass critical and supercritical cases, we establish the existence of blowup solutions to the problem for cylindrically symmetric data. The result extends the known ones with respect to blowup of solutions to the problem for radially symmetric data.
For microscale heterogeneous partial differential equations (PDEs), this article further develops novel theory and methodology for their macroscale mathematical/asymptotic homogenization. This article specifically encompasses the case of quasi-periodic heterogeneity with finite scale separation: no scale separation limit is required. A key innovation herein is to analyse the ensemble of all phase-shifts of the heterogeneity. Dynamical systems theory then frames the homogenization as a slow manifold of the ensemble. Depending upon any perceived scale separation within the quasi-periodic heterogeneity, the homogenization may be done in either one step or two sequential steps: the results are equivalent. The theory not only assures us of the existence and emergence of an exact homogenization at finite scale separation, it also provides a practical systematic method to construct the homogenization to any specified order. For a class of heterogeneities, we show that the macroscale homogenization is potentially valid down to lengths which are just twice that of the microscale heterogeneity! This methodology complements existing well-established results by providing a new rigorous and flexible approach to homogenization that potentially also provides correct macroscale initial and boundary conditions, treatment of forcing and control, and analysis of uncertainty.
We are interested in the two-dimensional four-constant Riemann problem to the isentropic compressible Euler equations. In terms of the self-similar variables, the governing system is of nonlinear mixed-type and the solution configuration typically contains transonic and small-scale structures. We construct a supersonic-sonic patch along a pseudo-streamline from the supersonic part to a sonic point. This kind of patch appears frequently in the two-dimensional Riemann problem and is a building block for constructing a global solution. To overcome the difficulty caused by the sonic degeneracy, we apply the characteristic decomposition technique to handle the problem in a partial hodograph plane. We establish a regular supersonic solution for the original problem by showing the global one-to-one property of the partial hodograph transformation. The uniform regularity of the solution and the regularity of an associated sonic curve are also discussed.
In a smoothly bounded domain $\Omega \subset \mathbb{R}^n$, $n\ge 1$, this manuscript considers the homogeneous Neumann boundary problem for the chemotaxis system
\begin{eqnarray*} \left \{ \begin{array}{l} u_t = \Delta u - \nabla \cdot (u\nabla v), \\[5pt] v_t = \Delta v + u - \alpha uv, \end{array} \right . \end{eqnarray*}
with parameter $\alpha \gt 0$ and with coincident production and uptake of attractants, as recently emphasized by Dallaston et al. as relevant for the understanding of T-cell dynamics.
It is shown that there exists $\delta _\star =\delta _\star (n)\gt 0$ such that for any given $\alpha \ge \frac{1}{\delta _\star }$ and for any suitably regular initial data satisfying $v(\cdot, 0)\le \delta _\star$, this problem admits a unique classical solution that stabilizes to the constant equilibrium $(\frac{1}{|\Omega |}\int _\Omega u(\cdot, 0), \, \frac{1}{\alpha })$ in the large time limit.
where $\Omega \subset \mathbb {R}^{n}$ is a bounded domain of class $C^{1,1}$, $1<p<({n+s})/({n-s}),\,n>\max \{1, 2s \}, 0<s<1, d>0$ and $\mathcal {N}_{s}u$ is the nonlocal Neumann derivative. We show that for small $d,$ the least energy solutions $u_d$ of the above problem achieve an $L^{\infty }$-bound independent of $d.$ Using this together with suitable $L^{r}$-estimates on $u_d,$ we show that the least energy solution $u_d$ achieves a maximum on the boundary of $\Omega $ for d sufficiently small.
Physics-informed neural networks (PINNs) and their variants have been very popular in recent years as algorithms for the numerical simulation of both forward and inverse problems for partial differential equations. This article aims to provide a comprehensive review of currently available results on the numerical analysis of PINNs and related models that constitute the backbone of physics-informed machine learning. We provide a unified framework in which analysis of the various components of the error incurred by PINNs in approximating PDEs can be effectively carried out. We present a detailed review of available results on approximation, generalization and training errors and their behaviour with respect to the type of the PDE and the dimension of the underlying domain. In particular, we elucidate the role of the regularity of the solutions and their stability to perturbations in the error analysis. Numerical results are also presented to illustrate the theory. We identify training errors as a key bottleneck which can adversely affect the overall performance of various models in physics-informed machine learning.
We use sheaves of spectra to quantize a Hamiltonian $\coprod _n BO(n)$-action on $\varinjlim _{N}T^*\mathbf {R}^N$ that naturally arises from Bott periodicity. We employ the category of correspondences developed by Gaitsgory and Rozenblyum [A study in derived algebraic geometry, vol. I. Correspondences and duality, Mathematical Surveys and Monographs, vol. 221 (American Mathematical Society, 2017)] to give an enrichment of stratified Morse theory by the $J$-homomorphism. This provides a key step in the work of Jin [Microlocal sheaf categories and the$J$-homomorphism, Preprint (2020), arXiv:2004.14270v4] on the proof of a claim of Jin and Treumann [Brane structures in microlocal sheaf theory, J. Topol. 17 (2024), e12325]: the classifying map of the local system of brane structures on an (immersed) exact Lagrangian submanifold $L\subset T^*\mathbf {R}^N$ is given by the composition of the stable Gauss map $L\rightarrow U/O$ and the delooping of the $J$-homomorphism $U/O\rightarrow B\mathrm {Pic}(\mathbf {S})$. We put special emphasis on the functoriality and (symmetric) monoidal structures of the categories involved and, as a byproduct, we produce several concrete constructions of (commutative) algebra/module objects and (right-lax) morphisms between them in the (symmetric) monoidal $(\infty, 2)$-category of correspondences, generalizing the construction out of Segal objects of Gaitsgory and Rozenblyum, which might be of independent interest.
We consider a class of nonhomogeneous elliptic equations in the half-space with critical singular boundary potentials and nonlinear fractional derivative terms. The forcing terms are considered on the boundary and can be taken as singular measure. Employing a functional setting and approach based on localization-in-frequency and Littlewood–Paley decomposition, we obtain results on solvability, regularity, and symmetry of solutions.
We study a system of nonlocal aggregation cross-diffusion PDEs that describe the evolution of opinion densities on a network. The PDEs are coupled with a system of ODEs that describe the time evolution of the agents on the network. Firstly, we apply the Deterministic Particle Approximation (DPA) method to the aforementioned system in order to prove the existence of solutions under suitable assumptions on the interactions between agents. Later on, we present an explicit model for opinion formation on an evolving network. The opinions evolve based on both the distance between the agents on the network and the ’attitude areas’, which depend on the distance between the agents’ opinions. The position of the agents on the network evolves based on the distance between the agents’ opinions. The goal is to study radicalisation, polarisation and fragmentation of the population while changing its open-mindedness and the radius of interaction.
We derive a global higher regularity result for weak solutions of the linear relaxed micromorphic model on smooth domains. The governing equations consist of a linear elliptic system of partial differential equations that is coupled with a system of Maxwell-type. The result is obtained by combining a Helmholtz decomposition argument with regularity results for linear elliptic systems and the classical embedding of $H(\operatorname {div};\Omega )\cap H_0(\operatorname {curl};\Omega )$ into $H^1(\Omega )$.
The purpose of this paper is to derive anisotropic mean curvature flow as the limit of the anisotropic Allen–Cahn equation. We rely on distributional solution concepts for both the diffuse and sharp interface models and prove convergence using relative entropy methods, which have recently proven to be a powerful tool in interface evolution problems. With the same relative entropy, we prove a weak–strong uniqueness result, which relies on the construction of gradient flow calibrations for our anisotropic energy functionals.
This paper investigates the separation property in binary phase-segregation processes modelled by Cahn-Hilliard type equations with constant mobility, singular entropy densities and different particle interactions. Under general assumptions on the entropy potential, we prove the strict separation property in both two and three-space dimensions. Namely, in 2D, we notably extend the minimal assumptions on the potential adopted so far in the literature, by only requiring a mild growth condition of its first derivative near the singular points $\pm 1$, without any pointwise additional assumption on its second derivative. For all cases, we provide a compact proof using De Giorgi’s iterations. In 3D, we also extend the validity of the asymptotic strict separation property to the case of fractional Cahn-Hilliard equation, as well as show the validity of the separation when the initial datum is close to an ‘energy minimizer’. Our framework offers insights into statistical factors like particle interactions, entropy choices and correlations governing separation, with broad applicability.
in a bounded domain $\Omega \subset \mathbb {R}^N(N=3,\,4,\,5)$ with smooth boundary $\partial \Omega$. It is shown that if $m>\max \{1,\,\frac {3N-2}{2N+2}\}$, for any reasonably smooth nonnegative initial data, the corresponding no-flux type initial-boundary value problem possesses a globally bounded weak solution. Furthermore, we prove that the solution converges to the spatially homogeneous equilibrium $(\bar {u}_0,\,0)$ in an appropriate sense as $t\rightarrow \infty$, where $\bar {u}_0=\frac {1}{|\Omega |}\int _\Omega u_0$. This result not only partly extends the previous global boundedness result in Fan and Jin (J. Math. Phys.58 (2017), 011503) and Wang and Xiang (Z. Angew. Math. Phys.66 (2015), 3159–3179) to $m>\frac {3N-2}{2N}$ in the case $N\geq 3$, but also partly improves the global existence result in Zheng and Wang (Discrete Contin. Dyn. Syst. Ser. B22 (2017), 669–686) to $m>\frac {3N}{2N+2}$ when $N\geq 2$.