To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let Ω ⊂ ℝN be a bounded domain such that 0 ∈ Ω, N ≥ 3, 2*(s) = 2(N − s)/(N − 2), 0 ≤ s < 2, . We obtain the existence of infinitely many solutions for the singular critical problem with Dirichlet boundary condition for suitable positive number λ.
In this paper we consider the problem of finding standing waves – solutions to nonlinear Schrödinger equations with vanishing potential and sign-changing nonlinearities. This involves searching for solutions of the problem (1)We show that the problem has a solution, and the maximum point of the solution is concentrated on a minimum point of some function as ε→0.
We construct global solutions of the minimal surface equation over certain smooth annular domains and over the domain exterior to certain smooth simple closed curves. Each resulting minimal graph has an isolated jump discontinuity on the inner boundary component which, at least in some cases, is shown to have nonvanishing curvature.
We establish that the elliptic equation defined in an exterior domain of ℝn, n≥3, has a positive solution which decays to 0 as under quite general assumptions upon f and g.
It iswell known that higher-order linear elliptic equations with measurable coefficients and higher-order nonlinear elliptic equations with analytic coefficients can admit unbounded solutions, unlike their second-order counterparts. In this work we introduce the concept of approximate truncates for functions in higher-order Sobolev spaces and prove that if a solution of a higher-order linear elliptic equation has an approximate truncate somewhere then it is bounded there.
The existence of a negative solution, of a positive solution, and of a sign-changing solution to a Dirichlet eigenvalue problem with p-Laplacian and multi-valued nonlinearity is investigated via sub- and supersolution methods as well as variational techniques for nonsmooth functions.
The aim of this article is to prove a symmetry result for several overdetermined boundary value problems. For the two first problems, our method combines the maximum principle with the monotonicity of the mean curvature. For the others, we use essentially the compatibility condition of the Neumann problem.
We show that a warped product Mf = nf has higher rank and nonpositive curvature if and only if f is a convex solution of the Monge-Ampère equation. In this case we show that M contains a Euclidean factor.
In this paper we give new results concerning the maximal regularity of the strict solution of an abstract second-order differential equation, with non-homogeneous boundary conditions of Dirichlet type, and set in an unbounded interval. The right-hand term of the equation is a Hölder continuous function.
This paper studies the existence and multiplicity of positive solutions of the following problem:
where Ω⊂RN(N≥3) is a smooth bounded domain, , 1 < p < N, and 0 < α < 1, p - 1 < β < p* - 1 (p* = Np/(N - p)) and 0 < γ < N + ((β + 1)(p - N)/p) are three constants. Also δ(x) = dist(x, ∂Ω), a ∈ Lp and λ < 0 is a real parameter. By using the direct method of the calculus of variations, Ekeland's Variational Principle and an idea of G. Tarantello, it is proved that problem (*) has at least two positive weak solutions if λ is small enough.
In this paper, first, we study the existence of the positive solutions of the nonlinear elliptic equations in unbounded domains. The existence is affected by the properties of the geometry and the topology of the domain. We assert that if there exists a (PS)c-sequence with c belonging to a suitable interval depending by the equation, then a ground state solution and a positive higher energy solution exist, too. Next, we study the upper half strip with a hole. In this case, the ground state solution does not exist, however there exists at least a positive higher energy solution.
In this paper we study the existence and uniqueness of positive solutions of boundary vlue problems for continuous semilinear perturbations, say f: [0, 1) × (0, ∞) → (0, ∞), of class of quasilinear operators which represent, for instance, the radial form of the Dirichlet problem on the unit ball of RN for the operators: p-Laplacian (1 < p < ∞) ad k-Hessian (1 ≤ k ≤ N). As a key feature, f (r, u) is possibly singular at r = 1 or u =0, Our approach exploits fixed point arguments and the Shooting Method.
The problem of scattering of tidal waves by reefs and spits of arbitrary shape is reduced to a skew derivative problem for the two-dimensional Helmholtz equation in the exterior of open arcs in a plane. The resulting boundary-value problem is studied by potential theory and a boundary integral equation method. After some transformations, the skew derivative problem is reduced to a Fredholm integral equation of the second kind, which is uniquely solvable. In this way the solvability theorem is proved and an integral representation of the solution is obtained. A uniqueness theorem is also proved.
A method of finding critical points in a half space is developed. It is then applied to the study of semilinear boundary value problems, and used to determine conditions which lead to multiple non-trivial solutions.
In this paper we complete two tasks. First we extend the nonsmooth critical point theory of Chang to the case where the energy functional satisfies only the weaker nonsmooth Cerami condition and we also relax the boundary conditions. Then we study semilinear and quasilinear equations (involving the p-Laplacian). Using a variational approach we establish the existence of one and of multiple solutions. In simple existence theorems, we allow the right hand side to be discontinuous. In that case in order to have an existence theory, we pass to a multivalued approximation of the original problem by, roughly speaking, filling in the gaps at the discontinuity points.
Let G be a connected Lie group with Lie algebra g and a1, …, ad an algebraic basis of g. Further let Ai denote the generators of left translations, acting on the Lp-spaces Lp(G; dg) formed with left Haar measure dg, in the directions ai. We consider second-order operators in divergence form corresponding to a quadratic form with complex coefficients, bounded Hölder continuous principal coefficients cij and lower order coefficients ci, c′ii, c0 ∈ L∞ such that the matrix C= (cij) of principal coefficients satisfies the subellipticity condition uniformly over G.
We discuss the hierarchy relating smoothness properties of the coefficients of H with smoothness of the kernel and smoothness of the domain of powers of H on the Lρ-spaces. Moreover, we present Gaussian type bounds for the kernel and its derivatives.
Similar theorems are proved for strongly elliptic operators in non-divergence form for which the principal coefficients are at least once differentiable.
We show that the Kato conjecture is true for m-accretive operators with highly singular coefficients. For operators of the form A = *F, where formally corresponds to d/dx + zδ on L2 (R), we prove that Dom (A1/2) = Dom() = e-zHH1(R) where H is the Heavysied function. By adapting recent methods of Auscher and Tchamitchian, we characterize Dom (A) in terms of an unconditional wavelet basis for L2(R).
We prove a new energy or Caccioppoli type estimate for minimisers of the model functional ∫Ω|Du|2 + (det Du)2, where Ω ⊂ 2 and u: Ω → 2. We apply this to establish C∞ regularity for minimisers except on a closed set of measure zero. We also prove a maximum principle and use this to establish everywhere continuity of minimisers.