We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We examine the regularity of the extremal solution of the nonlinear eigenvalue problem
on a general bounded domain Ω in ℝN, with Navier boundary condition u = Δu on ∂Ω. Firstly, we prove the extremal solution is smooth for any p > 1 and N ⩽ 4, which improves the result of Guo and Wei (Discrete Contin. Dynam. Syst. A 34 (2014), 2561–2580). Secondly, if p = 3, N = 3, we prove that any radial weak solution of this nonlinear eigenvalue problem is smooth in the case Ω = 𝔹, which completes the result of Dávila et al. (Math. Annalen348 (2009), 143–193). Finally, we also consider the stability of the entire solution of Δ2u = –l/up in ℝN with u > 0.
We consider an elliptic self-adjoint first-order differential operator $L$ acting on pairs (2-columns) of complex-valued half-densities over a connected compact three-dimensional manifold without boundary. The principal symbol of the operator $L$ is assumed to be trace-free and the subprincipal symbol is assumed to be zero. Given a positive scalar weight function, we study the weighted eigenvalue problem for the operator $L$. The corresponding counting function (number of eigenvalues between zero and a positive $\unicode[STIX]{x1D706}$) is known to admit, under appropriate assumptions on periodic trajectories, a two-term asymptotic expansion as $\unicode[STIX]{x1D706}\rightarrow +\infty$ and we have recently derived an explicit formula for the second asymptotic coefficient. The purpose of this paper is to establish the geometric meaning of the second asymptotic coefficient. To this end, we identify the geometric objects encoded within our eigenvalue problem—metric, non-vanishing spinor field and topological charge—and express our asymptotic coefficients in terms of these geometric objects. We prove that the second asymptotic coefficient of the counting function has the geometric meaning of the massless Dirac action.
For a non-negative and non-trivial real-valued continuous function hΩ × [0, ∞) such that h(x, 0) = 0 for all x ∈ Ω, we study the boundary-value problem
where Ω ⊆ ℝN, N ⩾ 2, is a bounded smooth domain and Δp:= div(|Du|p–2DDu) is the p-Laplacian. This work investigates growth conditions on h(x, t) that would lead to the existence or non-existence of distributional solutions to (BVP). In a major departure from past works on similar problems, in this paper we do not impose any special structure on the inhomogeneous term h(x, t), nor do we require any monotonicity condition on h in the second variable. Furthermore, h(x, t) is allowed to vanish in either of the variables.
We are concerned with the degenerate anisotropic problem
We first establish the existence of an unbounded sequence of weak solutions. We also obtain the existence of a non-trivial weak solution if the nonlinear term f has a special form. The proofs rely on the fountain theorem and Ekeland's variational principle.
In this paper we study a quasi-linear elliptic problem coupled with Dirichlet boundary conditions. We propose a new set of assumptions ensuring the existence of infinitely many solutions.
In this paper we deal with a singular elliptic problem involving an asymptotically linear nonlinearity and depending on two positive parameters. We investigate the existence, uniqueness and non-existence of the minima of the functional associated with the problem and, by employing a natural and very general definition of a weak solution, we also obtain a bifurcation-type result.
We are interested in entire solutions for the semilinear biharmonic equation Δ2u = f(u) in ℝN, where f(u) = eu or –u–p (p > 0). For the exponential case, we prove that for the polyharmonic problem Δ2mu = eu with positive integer m, any classical entire solution verifies Δ2m–1u < 0; this completes the results of Dupaigne et al. (Arch. Ration. Mech. Analysis208 (2013), 725–752) and Wei and Xu (Math. Annalen313 (1999), 207–228). We also obtain a refined asymptotic expansion of the radial separatrix solution to Δ2u = eu in ℝ3, which answers a question posed by Berchio et al. (J. Diff. Eqns252 (2012), 2569–2616). For the negative power case, we show the non-existence of the classical entire solution for any 0 < p ⩽ 1.
We introduce efficient approaches to construct high order finite difference discretizations for solving partial differential equations, based on a composite grid hierarchy. We introduce a modification of the traditional point clustering algorithm, obtained by adding restrictive parameters that control the minimal patch length and the size of the buffer zone. As a result, a reduction in the number of interfacial cells is observed. Based on a reasonable geometric grid setting, we discuss a general approach for the construction of stencils in a composite grid environment. The straightforward approach leads to an ill-posed problem. In our approach we regularize this problem, and transform it into solving a symmetric system of linear of equations. Finally, a stencil repository has been designed to further reduce computational overhead. The effectiveness of the discretizations is illustrated by numerical experiments on second order elliptic differential equations.
under assumptions that (i) $V(x_{0})<0$ for some $x_{0}\in \mathbb{R}^{N}$ and (ii) there exists $b>0$ such that the set ${\mathcal{V}}_{b}:=\{x\in \mathbb{R}^{N}:V(x)<b\}$ has finite measure, in addition to some common assumptions on $K$ and $f$, where $N\geq 3$, $2^{\ast }=2N/(N-2)$.
A periodic connection is constructed for a double well potential defined in the plane. This solution violates Modica's estimate as well as the corresponding Liouville theorem for general phase transition potentials. Gradient estimates are also established for several kinds of elliptic systems. They allow us to prove the Liouville theorem in some particular cases. Finally, we give an alternative form of the stress–energy tensor for solutions defined in planar domains. As an application, we deduce a (strong) monotonicity formula.
where Ω is a smooth and bounded domain in ℝn, ν is the outer unit normal to ∂Ω and a is a smooth function satisfying a(x) ∈ (–1, 1) in . Let K, Ω– and Ω+ be the zero-level sets of a, {a < 0} and {a < 0}, respectively. We assume ∇a ≠ 0 on K. Fife and Greenlee constructed stable layer solutions, while del Pino et al. proved the existence of one unstable layer solution provided that some gap condition is satisfied. In this paper, for each odd integer m ≥ 3, we prove the existence of a sequence ε = εj → 0, and a solution with m-transition layers near K. The distance of any two layers is O(ε log(1/ε)). Furthermore, converges uniformly to ±1 on the compact sets of Ω± as j → +∞
It has been shown by Kesavan (Proc. R. Soc. Edinb. A (133) (2003), 617–624) that the first eigenvalue for the Dirichlet Laplacian in a punctured ball, with the puncture having the shape of a ball, is maximum if and only if the balls are concentric. Recently, Emamizadeh and Zivari-Rezapour (Proc. Am. Math. Soc.136 (2007), 1325–1331) have tried to generalize this result to the case of the p-Laplacian but could succeed only in proving a domain monotonicity result for a weighted eigenvalue problem in which the weights need to satisfy some artificial conditions. In this paper we generalize the result of Kesavan to the case of the p-Laplacian (1 < p < ∞) without any artificial restrictions, and in the process we simplify greatly the proof, even in the case of the Laplacian. The uniqueness of the maximizing domain in the nonlinear case is still an open question.
We study the multiplicity and concentration behaviour of positive solutions for a quasi-linear Choquard equation
where Δp is the p-Laplacian operator, 1 < p < N, V is a continuous real function on ℝN, 0 < μ < N, F(s) is the primitive function of f(s), ε is a positive parameter and * represents the convolution between two functions. The question of the existence of semiclassical solutions for the semilinear case p = 2 has recently been posed by Ambrosetti and Malchiodi. We suppose that the potential satisfies the condition introduced by del Pino and Felmer, i.e.V has a local minimum. We prove the existence, multiplicity and concentration of solutions for the equation by the penalization method and Lyusternik–Schnirelmann theory and even show novel results for the semilinear case p = 2.
We introduce and study a multi-marginal optimal partial transport problem. Under a natural and sharp condition on the dominating marginals, we establish uniqueness of the optimal plan. Our strategy of proof establishes and exploits a connection with another novel problem, which we call the Monge–Kantorovich partial barycenter problem (with quadratic cost). This latter problem has a natural interpretation as a variant of the factories-and-mines description of optimal transport. We then turn our attention to various analytic properties of these two problems. Of particular interest, we show that monotonicity of the active marginals with respect to the amount $m$ of mass to be transported can fail, a surprising difference from the two-marginal case.
We prove the existence of one positive, one negative and one sign-changing solution of a p-Laplacian equation on ℝN with a p-superlinear subcritical term. Sign-changing solutions of quasilinear elliptic equations set on the whole of ℝN have scarcely been investigated in the literature. Our assumptions here are similar to those previously used by some authors in bounded domains, and our proof uses fairly elementary critical point theory, based on constraint minimization on the nodal Nehari set. The lack of compactness due to the unbounded domain is overcome by working in a suitable weighted Sobolev space.
Let n ≥ 2 and let be a Lipschitz wedge-like domain. We construct positive weak solutions of the problem
that vanish in a suitable trace sense on ∂Ω, but which are singular at a prescribed ‘edge’ of Ω if p is equal to or slightly above a certain exponent p0 > 1 that depends on Ω. Moreover, for the case in which Ω is unbounded, the solutions have fast decay at infinity.
where Ω is a bounded domain in $\mathbb{R}$n with smooth boundary ∂ Ω, λ is a large positive parameter, f:(0,∞) → [0,∞) is nonincreasing for large t and is allowed to be singular at 0.
We establish interior and trace embedding results for Sobolev functions on a class of bounded non-smooth domains. Also, we define the corresponding generalized Maz'ya spaces of variable exponent, and obtain embedding results similar as in the constant case. Some relations between the variable exponent Maz'ya spaces and the variable exponent Sobolev spaces are also achieved. At the end, we give an application of the previous results for the well-posedness of a class of quasi-linear equations with variable exponent.
We consider a quasilinear elliptic problem of the form
where λ > 0 is a parameter, 1 < p < 2 and Ω is a strictly convex bounded domain in ℝN, N > p, with C2 boundary ∂Ω. The nonlinearity f : [0, ∞) → ℝ is a continuous function that is semipositone (f(0) < 0) and p-superlinear at infinity. Using degree theory, combined with a rescaling argument and uniform L∞a priori bound, we establish the existence of a positive solution for λ small. Moreover, we show that there exists a connected component of positive solutions bifurcating from infinity at λ = 0. We also extend our study to systems.