To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider semilinear elliptic problems on two-dimensional hyperbolic space. A model problem of our study is
where H1(𝔹2) denotes the Sobolev space on the disc model of the hyperbolic space and f(x, t) denotes the function of critical growth in dimension 2. We first establish the Palais–Smale (PS) condition for the functional corresponding to the above equation, and using the PS condition we obtain existence of solutions. In addition, using a concentration argument, we also explore existence of infinitely many sign-changing solutions.
We consider the minimization of Dirichlet eigenvalues $\unicode[STIX]{x1D706}_{k}$, $k\in \mathbb{N}$, of the Laplacian on cuboids of unit measure in $\mathbb{R}^{3}$. We prove that any sequence of optimal cuboids in $\mathbb{R}^{3}$ converges to a cube of unit measure in the sense of Hausdorff as $k\rightarrow \infty$. We also obtain an upper bound for that rate of convergence.
Our first aim in this paper is to deal with the maximum principle for subfunctions in an arbitrary unbounded domain. As an application, we next give a result concerning the classical Phragmén–Lindelöf theorem for subfunctions in a cone. For a subfunction defined in a cone that is dominated on the boundary by a certain function, we finally generalize the Phragmén–Lindelöf type theorem by making a generalized harmonic majorant of it.
Using variational methods and depending on a parameter $\unicode[STIX]{x1D706}$ we prove the existence of solutions for the following class of nonlocal boundary value problems of Kirchhoff type defined on an exterior domain $\unicode[STIX]{x1D6FA}\subset \mathbb{R}^{3}$:
In this paper, we propose a Static Condensation Reduced Basis Element (SCRBE) approach for the Reynolds Lubrication Equation (RLE). The SCRBE method is a computational tool that allows to efficiently analyze parametrized structures which can be decomposed into a large number of similar components. Here, we extend the methodology to allow for a more general domain decomposition, a typical example being a checkerboard-pattern assembled from similar components. To this end, we extend the formulation and associated a posteriori error bound procedure. Our motivation comes from the analysis of the pressure distribution in plain journal bearings governed by the RLE. However, the SCRBE approach presented is not limited to bearings and the RLE, but directly extends to other component-based systems. We show numerical results for plain bearings to demonstrate the validity of the proposed approach.
Let Ω be an open connected cone in ℝn with vertex at the origin. Assume that the Operator
is subcritical in Ω, where δΩ is the distance function to the boundary of Ω and μ ⩽ 1/4. We show that under some smoothness assumption on Ω the improved Hardy-type inequality
holds true, and the Hardy-weight λ(μ)|x|–2 is optimal in a certain definite sense. The constant λ(μ) > 0 is given explicitly.
The existence of a non-trivial bounded solution to the Dirichlet problem is established for a class of nonlinear elliptic equations involving a fully anisotropic partial differential operator. The relevant operator depends on the gradient of the unknown through the differential of a general convex function. This function need not be radial, nor have a polynomial-type growth. Besides providing genuinely new conclusions, our result recovers and embraces, in a unified framework, several contributions in the existing literature, and augments them in various special instances.
We are concerned with the multiplicity of solutions to the system driven by a fractional operator with homogeneous Dirichlet boundary conditions. Namely, using fibering maps and the Nehari manifold, we obtain multiple solutions to the following fractional elliptic system:
where Ω is a smooth bounded set in ℝn, n > 2s, with s ∈ (0, 1); (–Δ)s is the fractional Laplace operator;, λ, μ > 0 are two parameters; the exponent n/(n – 2s) ⩽ q < 2; α > 1, β > 1 satisfy is the fractional critical Sobolev exponent.
where d(x) = d(x, ∂Ω), θ > –2 and Ω is a half-space. The existence and non-existence of several kinds of positive solutions to this equation when , f(u) = up(p > 1) and Ω is a bounded smooth domain were studied by Bandle, Moroz and Reichel in 2008. Here, we study exact the behaviour of positive solutions to this equation as d(x) → 0+ and d(x) → ∞, respectively, and the symmetry of positive solutions when , Ω is a half-space and f(u) is a more general nonlinearity term than up. Under suitable conditions for f, we show that the equation has a unique positive solution W, which is a function of x1 only, and W satisfies
This paper is concerned with the modified Wigner (respectively, Wigner–Fokker–Planck) Poisson equation. The quantum mechanical model describes the transport of charged particles under the influence of the modified Poisson potential field without (respectively, with) the collision operator. Existence and uniqueness of a global mild solution to the initial boundary value problem in one dimension are established on a weighted $L^{2}$-space. The main difficulties are to derive a priori estimates on the modified Poisson equation and prove the Lipschitz properties of the appropriate potential term.
We prove the existence of weak solutions of complex $m$-Hessian equations on compact Hermitian manifolds for the non-negative right-hand side belonging to $L^{p}$, $p>n/m$ ($n$ is the dimension of the manifold). For smooth, positive data the equation has recently been solved by Székelyhidi and Zhang. We also give a stability result for such solutions.
where ${\mathcal{L}}_{k}$ is a general nonlocal integrodifferential operator of fractional type, $\unicode[STIX]{x1D707}$ is a real parameter and $\unicode[STIX]{x1D6FA}$ is an open bounded subset of $\mathbb{R}^{n}$ ($n>2s$, where $s\in (0,1)$ is fixed) with Lipschitz boundary $\unicode[STIX]{x2202}\unicode[STIX]{x1D6FA}$. Here $f,g_{1},g_{2}:\unicode[STIX]{x1D6FA}\rightarrow \mathbb{R}$ and $h:\mathbb{R}\rightarrow \mathbb{R}$ are functions satisfying suitable hypotheses.
We present a simple, accurate method for computing singular or nearly singular integrals on a smooth, closed surface, such as layer potentials for harmonic functions evaluated at points on or near the surface. The integral is computed with a regularized kernel and corrections are added for regularization and discretization, which are found from analysis near the singular point. The surface integrals are computed from a new quadrature rule using surface points which project onto grid points in coordinate planes. The method does not require coordinate charts on the surface or special treatment of the singularity other than the corrections. The accuracy is about O(h3), where h is the spacing in the background grid, uniformly with respect to the point of evaluation, on or near the surface. Improved accuracy is obtained for points on the surface. The treecode of Duan and Krasny for Ewald summation is used to perform sums. Numerical examples are presented with a variety of surfaces.
We would like to present a method to compute the incompatibility operator in any system of curvilinear coordinates (components). The procedure is independent of the metric in the sense that the expression can be obtained by means of the basis vectors only, which are first defined as normal or tangential to the domain boundary, and then extended to the whole domain. It is an intrinsic method, to some extent, since the chosen curvilinear system depends solely on the geometry of the domain boundary. As an application, the in-extenso expression of incompatibility in a spherical system is given.
We study the following coupled nonlinear Schr¨odinger system in ℝ3:
where μ1 > 0, μ2 > 0 and β ∈ ℝ is a coupling constant. Irrespective of whether the system is repulsive or attractive, we prove that it has nodal semi-classical segregated or synchronized bound states with clustered spikes for sufficiently small ε under some additional conditions on P(x), Q(x) and β. Moreover, the number of this type of solutions will go to infinity as ε → 0+.
This paper is devoted to a unified a priori and a posteriori error analysis of CIP-FEM (continuous interior penalty finite element method) for second-order elliptic problems. Compared with the classic a priori error analysis in literature, our technique can easily apply for any type regularity assumption on the exact solution, especially for the case of lower H1+s weak regularity under consideration, where 0 ≤ s ≤ 1/2. Because of the penalty term used in the CIP-FEM, Galerkin orthogonality is lost and Céa Lemma for conforming finite element methods can not be applied immediately when 0≤s≤1/2. To overcome this difficulty, our main idea is introducing an auxiliary C1 finite element space in the analysis of the penalty term. The same tool is also utilized in the explicit a posteriori error analysis of CIP-FEM.
where λ is a positive parameter and f has exponential critical growth. We first establish the existence of a non-zero weak solution. Then, by assuming that f is odd, we prove that the number of solutions increases when the parameter λ becomes large. In the proofs we apply variational methods in a suitable weighted Sobolev space consisting of functions with rapid decay at infinity.
We prove the existence of positive solutions to a semipositone p-Laplacian problem combining mountain pass arguments, comparison principles, regularity principles and a priori estimates.
It is known that large time-stepping method are useful for simulating phase field models. In this work, an adaptive time-stepping strategy is proposed based on numerical energy stability and equi-distribution principle. The main idea is to use the energy variation as an indicator to update the time step, so that the resulting algorithm is free of user-defined parameters, which is different from several existing approaches. Some numerical experiments are presented to illustrate the effectiveness of the algorithms.