To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study global solution curves and prove the existence of infinitely many positive solutions for three classes of self-similar equations with p-Laplace operator. In the p = 2 case these are well-known problems involving the Gelfand equation, the equation modelling electrostatic micro-electromechanical systems (MEMS), and a polynomial nonlinearity. We extend the classical results of Joseph and Lundgren to the case in which p ≠ 2, and we generalize the main result of Guo and Wei on the equation modelling MEMS.
We introduce a multi-species chemotaxis type system admitting an arbitrarily large number of population species, all of which are attracted versus repelled by a single chemical substance. The production versus destruction rates of the chemotactic substance by the species is described by a probability measure. For such a model, we investigate the variational structures, in particular, we prove the existence of Lyapunov functionals, we establish duality properties as well as a logarithmic Hardy–Littlewood–Sobolev type inequality for the associated free energy. The latter inequality provides the optimal critical value for the conserved total population mass.
We investigate the following nonlinear Neumann boundary-value problem with associated p(x)-Laplace-type operator
where the function φ(x, v) is of type |v|p(x)−2v with continuous function p: → (1,∞) and both f : Ω × ℝ → ℝ and g : ∂Ω × ℝ → ℝ satisfy a Carathéodory condition. We first show the existence of infinitely many weak solutions for the Neumann problems using the Fountain theorem with the Cerami condition but without the Ambrosetti and Rabinowitz condition. Next, we give a result on the existence of a sequence of weak solutions for problem (P) converging to 0 in L∞-norm by employing De Giorgi's iteration and the localization method under suitable conditions.
Bifurcation of non-radial solutions from radial solutions of a semilinear elliptic equation with negative exponent in expanding annuli of ℝ2 is studied. To obtain the main results, we use a blow-up argument via the Morse index of the regular entire solutions of the equation
The main results of this paper can be seen as applications of the results obtained recently for finite Morse index solutions of the equation
Hardy space theory has been studied on manifolds or metric measure spaces equipped with either Gaussian or sub-Gaussian heat kernel behaviour. However, there are natural examples where one finds a mix of both behaviours (locally Gaussian and at infinity sub-Gaussian), in which case the previous theory does not apply. Still we define molecular and square function Hardy spaces using appropriate scaling, and we show that they agree with Lebesgue spaces in some range. Besides, counterexamples are given in this setting that the $H^{p}$ space corresponding to Gaussian estimates may not coincide with $L^{p}$. As a motivation for this theory, we show that the Riesz transform maps our Hardy space $H^{1}$ into $L^{1}$.
Positive solutions of a Kirchhoff-type nonlinear elliptic equation with a non-local integral term on a bounded domain in ℝN, N ⩾ 1, are studied by using bifurcation theory. The parameter regions of existence, non-existence and uniqueness of positive solutions are characterized by the eigenvalues of a linear eigenvalue problem and a nonlinear eigenvalue problem. Local and global bifurcation diagrams of positive solutions for various parameter regions are obtained.
We investigate the stability properties of positive steady-state solutions of semilinear initial–boundary-value problems with nonlinear boundary conditions. In particular, we employ a principle of linearized stability for this class of problems to prove sufficient conditions for the stability and instability of such solutions. These results shed some light on the combined effects of the reaction term and the boundary nonlinearity on stability properties. We also discuss various examples satisfying our hypotheses for stability results in dimension 1. In particular, we provide complete bifurcation curves for positive solutions for these examples.
This paper is concerned with the invisibility cloaking in acoustic wave scattering from a new perspective. We are especially interested in achieving the invisibility cloaking by completely regular and isotropic mediums. It is shown that an interior transmission eigenvalue problem arises in our study, which is the one considered theoretically in Cakoni et al. (Transmission eigenvalues for inhomogeneous media containing obstacles, Inverse Problems and Imaging, 6 (2012), 373–398). Based on such an observation, we propose a cloaking scheme that takes a three-layer structure including a cloaked region, a lossy layer and a cloaking shell. The target medium in the cloaked region can be arbitrary but regular, whereas the mediums in the lossy layer and the cloaking shell are both regular and isotropic. We establish that if a certain non-transparency condition is satisfied, then there exists an infinite set of incident waves such that the cloaking device is nearly invisible under the corresponding wave interrogation. The set of waves is generated from the Herglotz approximation of the associated interior transmission eigenfunctions. We provide both theoretical and numerical justifications.
We consider reaction–diffusion equations under nonlinear boundary conditions where the nonlinearities are asymptotically linear at infinity and depend on a parameter. We prove that, as the parameter crosses some critical values, a resonance-type phenomenon provides solutions that bifurcate from infinity. We characterize the bifurcated branches when they are sub- or supercritical. We obtain both Landesman–Lazer-type conditions that guarantee the existence of solutions in the resonant case and an anti-maximum principle.
We deal with the problem of determining an unknown part of the boundary of an electrical conductor that is inaccessible for external observation and where a corrosion process is going on. We obtain estimates of the size of this damaged region from above and below.
We study Lotka–Volterra models with fractional Laplacian. To do this we study in detail the logistic problem and show that the sub–supersolution method works for both the scalar problem and for systems. We apply this method to show the existence and non-existence of positive solutions in terms of the system parameters.
where $\unicode[STIX]{x1D6FA}\subset \mathbb{R}^{N}$ is a bounded smooth domain, $a(x)$ is a (possibly) sign-changing potential, $0<q<1$, $\unicode[STIX]{x1D6FC}>0$, $\unicode[STIX]{x1D6FD}\geq 0$, $\unicode[STIX]{x1D707}>0$ and the function $f$ has arbitrary growth at infinity. In the proof, we apply variational methods together with a truncation argument.
where α ≥ 2, Ω is a smooth bounded domain in ${\mathbb{R}}$N, θ is a parameter and g, h ∈ C($\bar{\Omega}$ × ${\mathbb{R}}$). Under the assumptions that g(x, u) is odd and locally superlinear at infinity in u, we prove that for any j ∈ $\mathbb{N}$ there exists ϵj > 0 such that if |θ| ≤ ϵj, the above problem possesses at least j distinct solutions. Our results generalize some known results in the literature and are new even in the symmetric situation.
In this paper, nonconforming mixed finite element method is proposed to simulate the wave propagation in metamaterials. The error estimate of the semi-discrete scheme is given by convergence order O(h2), which is less than 40 percent of the computational costs comparing with the same effect by using Nédélec-Raviart element. A Crank-Nicolson full discrete scheme is also presented with O(τ2 + h2) by traditional discrete formula without using penalty method. Numerical examples of 2D TE, TM cases and a famous re-focusing phenomena are shown to verify our theories.
This paper deals with the class of Schrödinger–Kirchhoff-type biharmonic problems
where Δ2 denotes the biharmonic operator, and f ∈ C(ℝN × ℝ, ℝ) satisfies the Ambrosetti–Rabinowitz-type conditions. Under appropriate assumptions on V and f, the existence of infinitely many solutions is proved by using the symmetric mountain pass theorem.
We are interested in non-negative non-trivial solutions of
where 1 < p and Ω is a bounded smooth domain in ℝN with 3 ⩽ N ⩽ 9. We show that given a non-negative integer M there is some large p(M,Ω) such that the only non-negative solution u, of Morse index at most M, is u = 0.
We study the following polyharmonic Hénon equation:
where (m)* = 2N/(N – 2m) is the critical exponent, B1(0) is the unit ball in ℝN, N ⩾ 2m + 2 and K(|y|) is a bounded function. We prove the existence of infinitely many non-radial positive solutions, whose energy can be made arbitrarily large.
where Ω = ℝN or Ω = B1, N ⩾ 3, p > 1 and . Using a suitable map we transform problem (1) into another one without the singularity 1/|x|2. Then we obtain some bifurcation results from the radial solutions corresponding to some explicit values of λ.
We consider the Steklov eigenvalues of the Laplace operator as limiting Neumann eigenvalues in a problem of mass concentration at the boundary of a ball. We discuss the asymptotic behaviour of the Neumann eigenvalues and find explicit formulae for their derivatives in the limiting problem. We deduce that the Neumann eigenvalues have a monotone behaviour in the limit and that Steklov eigenvalues locally minimize the Neumann eigenvalues.