We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Structural changes of the pore space and clogging phenomena are inherent to many porous media applications. However, related analytical investigations remain challenging due to potentially vanishing coefficients in the respective systems of partial differential equations. In this research, we apply an appropriate scaling of the unknowns and work with porosity-weighted function spaces. This enables us to prove existence, uniqueness and non-negativity of weak solutions to a combined flow and transport problem with vanishing, but prescribed porosity field, permeability and diffusion.
Vector-borne diseases, such as chikungunya, dengue, malaria, West Nile virus, yellow fever and Zika, pose a major global public health problem worldwide. In this paper we investigate the propagation dynamics of diffusive vector-borne disease models in the whole space, which characterize the spatial expansion of the infected hosts and infected vectors. Due to the lack of monotonicity, the comparison principle cannot be applied directly to this system. We determine the spreading speed and minimal wave speed when the basic reproduction number of the corresponding kinetic system is larger than one. The spreading speed is mainly estimated by the uniform persistence argument and generalized principal eigenvalue. We also show that solutions converge locally uniformly to the positive equilibrium by employing two auxiliary monotone systems. Moreover, it is proven that the spreading speed is the minimal wave speed of travelling wave solutions. In particular, the uniqueness and monotonicity of travelling waves are obtained. When the basic reproduction number of the corresponding kinetic system is not larger than one, it is shown that solutions approach to the disease-free equilibrium uniformly and there is no travelling wave solutions. Finally, numerical simulations are presented to illustrate the analytical results.
In this paper, we prove the existence and regularity of pullback attractors for non-autonomous nonclassical diffusion equations with nonlocal diffusion when the nonlinear term satisfies critical exponential growth and the external force term $h \in L_{l o c}^{2}(\mathbb {R} ; H^{-1}(\Omega )).$ Under some appropriate assumptions, we establish the existence and uniqueness of the weak solution in the time-dependent space $\mathcal {H}_{t}(\Omega )$ and the existence and regularity of the pullback attractors.
which was introduced by Short et al. in [40] with
$\chi=2$
to describe the dynamics of urban crime.
In bounded intervals
$\Omega\subset\mathbb{R}$
and with prescribed suitably regular non-negative functions
$B_1$
and
$B_2$
, we first prove the existence of global classical solutions for any choice of
$\chi>0$
and all reasonably regular non-negative initial data.
We next address the issue of determining the qualitative behaviour of solutions under appropriate assumptions on the asymptotic properties of
$B_1$
and
$B_2$
. Indeed, for arbitrary
$\chi>0$
, we obtain boundedness of the solutions given strict positivity of the average of
$B_2$
over the domain; moreover, it is seen that imposing a mild decay assumption on
$B_1$
implies that u must decay to zero in the long-term limit. Our final result, valid for all
$\chi\in\left(0,\frac{\sqrt{6\sqrt{3}+9}}{2}\right),$
which contains the relevant value
$\chi=2$
, states that under the above decay assumption on
$B_1$
, if furthermore
$B_2$
appropriately stabilises to a non-trivial function
$B_{2,\infty}$
, then (u,v) approaches the limit
$(0,v_\infty)$
, where
$v_\infty$
denotes the solution of
We conclude with some numerical simulations exploring possible effects that may arise when considering large values of
$\chi$
not covered by our qualitative analysis. We observe that when
$\chi$
increases, solutions may grow substantially on short time intervals, whereas only on large timescales diffusion will dominate and enforce equilibration.
The Fisher–Kolmogorov–Petrovsky–Piskunov (Fisher–KPP) equation is one of the prototypical reaction–diffusion equations and is encountered in many areas, primarily in population dynamics. An important consideration for the phenomena modelled by diffusion equations is the length of the diffusive process. In this paper, three definitions of the critical time are given, and bounds are obtained by a careful construction of the upper and lower solutions. The comparison functions satisfy the nonlinear, but linearizable, partial differential equations of Fisher–KPP type. Results of the numerical simulations are displayed. Extensions to some classes of reaction–diffusion systems and an application to a spatially heterogeneous harvesting model are also presented.
In this study, we investigate the intial value problem (IVP) for a time-fractional fourth-order equation with nonlinear source terms. More specifically, we consider the time-fractional biharmonic with exponential nonlinearity and the time-fractional Cahn–Hilliard equation. By using the Fourier transform concept, the generalized formula for the mild solution as well as the smoothing effects of resolvent operators are proved. For the IVP associated with the first one, by using the Orlicz space with the function $\Xi (z)={\textrm {e}}^{|z|^{p}}-1$ and some embeddings between it and the usual Lebesgue spaces, we prove that the solution is a global-in-time solution or it shall blow up in a finite time if the initial value is regular. In the case of singular initial data, the local-in-time/global-in-time existence and uniqueness are derived. Also, the regularity of the mild solution is investigated. For the IVP associated with the second one, some modifications to the generalized formula are made to deal with the nonlinear term. We also establish some important estimates for the derivatives of resolvent operators, they are the basis for using the Picard sequence to prove the local-in-time existence of the solution.
This paper is concerned with spreading phenomena of the classical two-species Lotka-Volterra reaction-diffusion system in the weak competition case. More precisely, some new sufficient conditions on the linear or nonlinear speed selection of the minimal wave speed of travelling wave fronts, which connect one half-positive equilibrium and one positive equilibrium, have been given via constructing types of super-sub solutions. Moreover, these conditions for the linear or nonlinear determinacy are quite different from that of the minimal wave speeds of travelling wave fronts connecting other equilibria of Lotka-Volterra competition model. In addition, based on the weighted energy method, we give the global exponential stability of such solutions with large speed $c$. Specially, when the competition rate exerted on one species converges to zero, then for any $c>c_0$, where $c_0$ is the critical speed, the travelling wave front with the speed $c$ is globally exponentially stable.
Existence of non-negative weak solutions is shown for a full curvature thin-film model of a liquid thin film flowing down a vertical fibre. The proof is based on the application of a priori estimates derived for energy-entropy functionals. Long-time behaviour of these weak solutions is analysed and, under some additional constraints for the model parameters and initial values, convergence towards a travelling wave solution is obtained. Numerical studies of energy minimisers and travelling waves are presented to illustrate analytical results.
In this paper, we study a mathematical model for an infectious disease caused by a virus such as Cholera without lifetime immunity. Due to the different mobility for susceptible, infected human and recovered human hosts, the diffusion coefficients are assumed to be different. The resulting system is governed by a strongly coupled reaction–diffusion system with different diffusion coefficients. Global existence and uniqueness are established under certain assumptions on known data. Moreover, global asymptotic behaviour of the solution is obtained when some parameters satisfy certain conditions. These results extend the existing results in the literature. The main tool used in this paper comes from the delicate theory of elliptic and parabolic equations. Moreover, the energy method and Sobolev embedding are used in deriving a priori estimates. The analysis developed in this paper can be employed to study other epidemic models in biological, ecological and health sciences.
We consider a system of reaction–diffusion equations including chemotaxis terms and coming out of the modelling of multiple sclerosis. The global existence of strong solutions to this system in any dimension is proved, and it is also shown that the solution is bounded uniformly in time. Finally, a nonlinear stability result is obtained when the chemotaxis term is not too big. We also perform numerical simulations to show the appearance of Turing patterns when the chemotaxis term is large.
A non-linear reaction–diffusion system with cross-diffusion describing the COVID-19 outbreak is studied using the Lie symmetry method. A complete Lie symmetry classification is derived and it is shown that the system with correctly specified parameters admits highly non-trivial Lie symmetry operators, which do not occur for all known reaction–diffusion systems. The symmetries obtained are also applied for finding exact solutions of the system in the most interesting case from applicability point of view. It is shown that the exact solutions derived possess typical properties for describing the pandemic spread under 1D approximation in space and lead to the distributions, which qualitatively correspond to the measured data of the COVID-19 spread in Ukraine.
We will give a new proof of the existence of hypercylinder expander of the inverse mean curvature flow which is a radially symmetric homothetic soliton of the inverse mean curvature flow in
$\mathbb {R}^{n}\times \mathbb {R}$
,
$n\ge 2$
, of the form
$(r,y(r))$
or
$(r(y),y)$
, where
$r=|x|$
,
$x\in \mathbb {R}^{n}$
, is the radially symmetric coordinate and
$y\in \mathbb {R}$
. More precisely, for any
$\lambda>\frac {1}{n-1}$
and
$\mu>0$
, we will give a new proof of the existence of a unique even solution
$r(y)$
of the equation
$\frac {r^{\prime \prime }(y)}{1+r^{\prime }(y)^{2}}=\frac {n-1}{r(y)}-\frac {1+r^{\prime }(y)^{2}}{\lambda (r(y)-yr^{\prime }(y))}$
in
$\mathbb {R}$
which satisfies
$r(0)=\mu $
,
$r^{\prime }(0)=0$
and
$r(y)>yr^{\prime }(y)>0$
for any
$y\in \mathbb {R}$
. We will prove that
$\lim _{y\to \infty }r(y)=\infty $
and
$a_{1}:=\lim _{y\to \infty }r^{\prime }(y)$
exists with
$0\le a_{1}<\infty $
. We will also give a new proof of the existence of a constant
$y_{1}>0$
such that
$r^{\prime \prime }(y_{1})=0$
,
$r^{\prime \prime }(y)>0$
for any
$0<y<y_{1}$
, and
$r^{\prime \prime }(y)<0$
for any
$y>y_{1}$
.
Based on the fact that the incubation periods of epidemic disease in asymptomatically infected and infected individuals are inevitable and different, we propose a diffusive susceptible, asymptomatically infected, symptomatically infected and vaccinated (SAIV) epidemic model with delays in this paper. To see whether epidemic disease can propagate spatially with a constant speed, we focus on the travelling wave solution for this model. When the basic reproduction number of the corresponding spatial-homogenous delayed differential system is greater than one and the wave speed is greater than or equal to the critical speed, we prove that this model admits nontrivial positive travelling wave solutions. Our theoretical results are of benefit to the prevention and control of epidemic.
This paper is concerned with the asymptotic propagations for a nonlocal dispersal population model with shifting habitats. In particular, we verify that the invading speed of the species is determined by the speed c of the shifting habitat edge and the behaviours near infinity of the species’ growth rate which is nondecreasing along the positive spatial direction. In the case where the species declines near the negative infinity, we conclude that extinction occurs if c > c*(∞), while c < c*(∞), spreading happens with a leftward speed min{−c, c*(∞)} and a rightward speed c*(∞), where c*(∞) is the minimum KPP travelling wave speed associated with the species’ growth rate at the positive infinity. The same scenario will play out for the case where the species’ growth rate is zero at negative infinity. In the case where the species still grows near negative infinity, we show that the species always survives ‘by moving’ with the rightward spreading speed being either c*(∞) or c*(−∞) and the leftward spreading speed being one of c*(∞), c*(−∞) and −c, where c*(−∞) is the minimum KPP travelling wave speed corresponding to the growth rate at the negative infinity. Finally, we give some numeric simulations and discussions to present and explain the theoretical results. Our results indicate that there may exists a solution like a two-layer wave with the propagation speeds analytically determined for such type of nonlocal dispersal equations.
This paper studies the periodic trajectories of a novel age-structured prey–predator system with Michaelis–Menten functional response including delays and asymmetric diffusion. To begin with, the system is turned into an abstract non-densely defined Cauchy problem, and a time-lag effect in their interaction is investigated. Next, we acquire that this system appears a periodic orbit near the positive steady state by employing the method of integrated semigroup and the Hopf bifurcation theory for semilinear equations with non-dense domain, which is also the main result of this article. Finally, in order to illustrate our theoretical analysis more vividly, we make some numerical simulations and give some discussions.
In this paper, we study the principal spectral theory of age-structured models with random diffusion. First, we provide an equivalent characteristic for the principal eigenvalue, the strong maximum principle and a positive strict super-solution. Then, we use the result to investigate the effects of diffusion rate on the principal eigenvalue. Finally, we study how the principal eigenvalue affects the global dynamics of the KPP model and verify that the principal eigenvalue being zero is a critical value.
We show local higher integrability of derivative of a suitable weak solution to the surface growth model, provided a scale-invariant quantity is locally bounded. If additionally our scale-invariant quantity is small, we prove local smoothness of solutions.
We consider a model for the evolution of damage in elastic materials originally proposed by Michel Frémond. For the corresponding PDE system, we prove existence and uniqueness of a local in time strong solution. The main novelty of our result stands in the fact that, differently from previous contributions, we assume no occurrence of any type of regularising terms.
We extend previous weak well-posedness results obtained in Frigeri et al. (2017, Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs, Vol. 22, Springer, Cham, pp. 217–254) concerning a non-local variant of a diffuse interface tumour model proposed by Hawkins-Daarud et al. (2012, Int. J. Numer. Method Biomed. Engng.28, 3–24). The model consists of a non-local Cahn–Hilliard equation with degenerate mobility and singular potential for the phase field variable, coupled to a reaction–diffusion equation for the concentration of a nutrient. We prove the existence of strong solutions to the model and establish some high-order continuous dependence estimates, even in the presence of concentration-dependent mobilities for the nutrient variable in two spatial dimensions. Then, we apply the new regularity results to study an inverse problem identifying the initial tumour distribution from measurements at the terminal time. Formulating the Tikhonov regularised inverse problem as a constrained minimisation problem, we establish the existence of minimisers and derive first-order necessary optimality conditions.