To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let E and D be open subsets of $\mathbb {R}^{n+1}$ such that $\overline {D}$ is a compact subset of E, and let v be a supertemperature on E. A temperature u on D is called extendable by v if there is a supertemperature w on E such that $w=u$ on D and $w=v$ on $E\backslash \overline D$. From earlier work of N. A. Watson, [‘Extendable temperatures’, Bull. Aust. Math. Soc.100 (2019), 297–303], either there is a unique temperature extendable by v, or there are infinitely many; a necessary condition for uniqueness is that the generalised solution of the Dirichlet problem on D corresponding to the restriction of v to $\partial _eD$ is equal to the greatest thermic minorant of v on D. In this paper we first give a condition for nonuniqueness and an example to show that this necessary condition is not sufficient. We then give a uniqueness theorem involving the thermal and cothermal fine topologies and deduce a corollary involving only parabolic and coparabolic tusks.
In this paper, we propose and study an almost periodic reaction–diffusion epidemic model in which disease latency, spatial heterogeneity and general seasonal fluctuations are incorporated. The model is given by a spatially nonlocal reaction–diffusion system with a fixed time delay. We first characterise the upper Lyapunov exponent λ* for a class of almost periodic reaction–diffusion equations with a fixed time delay and provide a numerical method to compute it. On this basis, the global threshold dynamics of this model is established in terms of λ* It is shown that the disease-free almost periodic solution is globally attractive if λ* < 0, while the disease is persistent if λ* > 0. By virtue of numerical simulations, we investigate the effects of diffusion rate, incubation period and spatial heterogeneity on disease transmission.
The propagation of gradient flow structures from microscopic to macroscopic models is a topic of high current interest. In this paper, we discuss this propagation in a model for the diffusion of particles interacting via hard-core exclusion or short-range repulsive potentials. We formulate the microscopic model as a high-dimensional gradient flow in the Wasserstein metric for an appropriate free-energy functional. Then we use the JKO approach to identify the asymptotics of the metric and the free-energy functional beyond the lowest order for single particle densities in the limit of small particle volumes by matched asymptotic expansions. While we use a propagation of chaos assumption at far distances, we consider correlations at small distance in the expansion. In this way, we obtain a clear picture of the emergence of a macroscopic gradient structure incorporating corrections in the free-energy functional due to the volume exclusion.
We propose and investigate a stage-structured SLIRM epidemic model with latent period in a spatially continuous habitat. We first show the existence of semi-travelling waves that connect the unstable disease-free equilibrium as the wave coordinate goes to − ∞, provided that the basic reproduction number $\mathcal {R}_0 > 1$ and $c > c_*$ for some positive number $c_*$. We then use a combination of asymptotic estimates, Laplace transform and Cauchy's integral theorem to show the persistence of semi-travelling waves. Based on the persistent property, we construct a Lyapunov functional to prove the convergence of the semi-travelling wave to an endemic (positive) equilibrium as the wave coordinate goes to + ∞. In addition, by the Laplace transform technique, the non-existence of bounded semi-travelling wave is also proved when $\mathcal {R}_0 > 1$ and $0 < c < c_*$. This indicates that $c_*$ is indeed the minimum wave speed. Finally simulations are given to illustrate the evolution of profiles.
This paper deals with the logistic Keller–Segel model
\[ \begin{cases} u_t = \Delta u - \chi \nabla\cdot(u\nabla v) + \kappa u - \mu u^2, \\ v_t = \Delta v - v + u \end{cases} \]
in bounded two-dimensional domains (with homogeneous Neumann boundary conditions and for parameters χ, κ ∈ ℝ and μ > 0), and shows that any nonnegative initial data (u0, v0) ∈ L1 × W1,2 lead to global solutions that are smooth in $\bar {\Omega }\times (0,\infty )$.
In this paper, we investigate the global boundedness, asymptotic stability and pattern formation of predator–prey systems with density-dependent prey-taxis in a two-dimensional bounded domain with Neumann boundary conditions, where the coefficients of motility (diffusiq‘dfdon) and mobility (prey-taxis) of the predator are correlated through a prey density-dependent motility function. We establish the existence of classical solutions with uniform-in time bound and the global stability of the spatially homogeneous prey-only steady states and coexistence steady states under certain conditions on parameters by constructing Lyapunov functionals. With numerical simulations, we further demonstrate that spatially homogeneous time-periodic patterns, stationary spatially inhomogeneous patterns and chaotic spatio-temporal patterns are all possible for the parameters outside the stability regime. We also find from numerical simulations that the temporal dynamics between linearised system and nonlinear systems are quite different, and the prey density-dependent motility function can trigger the pattern formation.
We study the existence of entropy solutions by assuming the right-hand side function f to be an integrable function for some elliptic nonlocal p-Laplacian type problems. Moreover, the existence of weak solutions for the corresponding parabolic cases is also established. The main aim of this paper is to provide some positive answers for the two questions proposed by Chipot and de Oliveira (Math. Ann., 2019, 375, 283-306).
We consider the Cauchy problem for a general class of parabolic partial differential equations in the Euclidean space ℝN. We show that given a weighted Lp-space $L_w^p({\mathbb {R}}^N)$ with 1 ⩽ p < ∞ and a fast growing weight w, there is a Schauder basis $(e_n)_{n=1}^\infty$ in $L_w^p({\mathbb {R}}^N)$ with the following property: given an arbitrary positive integer m there exists nm > 0 such that, if the initial data f belongs to the closed linear span of en with n ⩾ nm, then the decay rate of the solution of the problem is at least t−m for large times t.
The result generalizes the recent study of the authors concerning the classical linear heat equation. We present variants of the result having different methods of proofs and also consider finite polynomial decay rates instead of unlimited m.
We propose and study a class of parabolic-ordinary differential equation models involving chemotaxis and haptotaxis of a species following signals indirectly produced by another, non-motile one. The setting is motivated by cancer invasion mediated by interactions with the tumour microenvironment, but has much wider applicability, being able to comprise descriptions of biologically quite different problems. As a main mathematical feature constituting a core difference to both classical Keller–Segel chemotaxis systems and Chaplain–Lolas type chemotaxis–haptotaxis systems, the considered model accounts for certain types of indirect signal production mechanisms. The main results assert unique global classical solvability under suitably mild assumptions on the system parameter functions in associated spatially two-dimensional initial-boundary value problems. In particular, this rigorously confirms that at least in two-dimensional settings, the considered indirectness in signal production induces a significant blow-up suppressing tendency also in taxis systems substantially more general than some particular examples for which corresponding effects have recently been observed.
We consider a Keller–Segel model that describes the cellular chemotactic movement away from repulsive chemical subject to logarithmic sensitivity function over a confined region in ${{\mathbb{R}}^n},\,n \le 2$. This sensitivity function describes the empirically tested Weber–Fecher’s law of living organism’s perception of a physical stimulus. We prove that, regardless of chemotaxis strength and initial data, this repulsive system is globally well-posed and the constant solution is the global and exponential in time attractor. Our results confirm the ‘folklore’ that chemorepulsion inhibits the formation of non-trivial steady states within the logarithmic chemotaxis model, hence preventing cellular aggregation therein.
The work in this paper concerns the study of different approximations for one-dimensional one-phase Stefan-like problems with a space-dependent latent heat. It is considered two different problems, which differ from each other in their boundary condition imposed at the fixed face: Dirichlet and Robin conditions. The approximate solutions are obtained by applying the heat balance integral method (HBIM), the modified HBIM and the refined integral method (RIM). Taking advantage of the exact analytical solutions, we compare and test the accuracy of the approximate solutions. The analysis is carried out using the dimensionless generalised Stefan number (Ste) and Biot number (Bi). It is also studied the case when Bi goes to infinity in the problem with a convective condition, recovering the approximate solutions when a temperature condition is imposed at the fixed face. Some numerical simulations are provided in order to assert which of the approximate integral methods turns out to be optimal. Moreover, we pose an approximate technique based on minimising the least-squares error, obtaining also approximate solutions for the classical Stefan problem.
This paper deals with the global existence for a class of Keller–Segel model with signal-dependent motility and general logistic term under homogeneous Neumann boundary conditions in a higher-dimensional smoothly bounded domain, which can be written as
then the considered system possesses a global classical solution for all sufficiently smooth initial data. Furthermore, the solution converges to the equilibrium
Q-conditional (non-classical) symmetries of the known three-component reaction-diffusion (RD) system [K. Aoki et al. Theor. Popul. Biol. 50, 1–17 (1996)] modelling interaction between farmers and hunter-gatherers are constructed for the first time. A wide variety of Q-conditional symmetries are found, and it is shown that these symmetries are not equivalent to the Lie symmetries. Some operators of Q-conditional (non-classical) symmetry are applied for finding exact solutions of the RD system in question. Properties of the exact solutions (in particular, their asymptotic behaviour) are identified and possible biological interpretation is discussed.
In a planar smoothly bounded domain $\Omega$, we consider the model for oncolytic virotherapy given by
$$\left\{ \begin{array}{l} u_t = \Delta u - \nabla \cdot (u\nabla v) - uz, \\[1mm] v_t = - (u+w)v, \\[1mm] w_t = d_w \Delta w - w + uz, \\[1mm] z_t = d_z \Delta z - z - uz + \beta w, \end{array} \right.$$
with positive parameters $ D_w $, $ D_z $ and $\beta$. It is firstly shown that whenever $\beta \lt 1$, for any choice of $M \gt 0$, one can find initial data such that the solution of an associated no-flux initial-boundary value problem, well known to exist globally actually for any choice of $\beta \gt 0$, satisfies
$$u\ge M \qquad \mbox{in } \Omega\times (0,\infty).$$
If $\beta \gt 1$, however, then for arbitrary initial data the corresponding is seen to have the property that
This may be interpreted as indicating that $\beta$ plays the role of a critical virus replication rate with regard to efficiency of the considered virotherapy, with corresponding threshold value given by $\beta = 1$.
In this paper we consider uncertainty principles for solutions of certain partial differential equations on $H$-type groups. We first prove that, on $H$-type groups, the heat kernel is an average of Gaussians in the central variable, so that it does not satisfy a certain reformulation of Hardy’s uncertainty principle. We then prove the analogue of Hardy’s uncertainty principle for solutions of the Schrödinger equation with potential on $H$-type groups. This extends the free case considered by Ben Saïd et al. [‘Uniqueness of solutions to Schrödinger equations on H-type groups’, J. Aust. Math. Soc. (3)95 (2013), 297–314] and by Ludwig and Müller [‘Uniqueness of solutions to Schrödinger equations on 2-step nilpotent Lie groups’, Proc. Amer. Math. Soc.142 (2014), 2101–2118].
The Kudryashov–Sinelshchikov–Olver equation describes pressure waves in liquids with gas bubbles taking into account heat transfer and viscosity. In this paper, we prove the existence of solutions of the Cauchy problem associated with this equation.
In this paper, we consider the monotone travelling wave solutions of a reaction–diffusion epidemic system with nonlocal delays. We obtain the existence of monotone travelling wave solutions by applying abstract existence results. By transforming the nonlocal delayed system to a non-delayed system and choosing suitable small positive constants to define a pair of new upper and lower solutions, we use the contraction technique to prove the asymptotic stability (up to translation) of monotone travelling waves. Furthermore, the uniqueness and Lyapunov stability of monotone travelling wave solutions will be established with the help of the upper and lower solution method and the exponential asymptotic stability.
We consider the well-posedness of a stochastic evolution problem in a bounded Lipschitz domain D ⊂ ℝd with homogeneous Dirichlet boundary conditions and an initial condition in L2(D). The main technical difficulties in proving the result of existence and uniqueness of a solution arise from the nonlinear diffusion-convection operator in divergence form which is given by the sum of a Carathéodory function satisfying p-type growth associated with coercivity assumptions and a Lipschitz continuous perturbation. In particular, we consider the case 1 < p < 2 with an appropriate lower bound on p determined by the space dimension. Another difficulty arises from the fact that the additive stochastic perturbation with values in L2(D) on the right-hand side of the equation does not inherit the Sobolev spatial regularity from the solution as in the multiplicative noise case.
We prove rigidity theorems for ancient solutions of geometric flows of immersed submanifolds. Specifically, we find conditions on the second fundamental form that characterise the shrinking sphere among compact ancient solutions for the mean curvature flow in codimension two surfaces.