We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Q-conditional (non-classical) symmetries of the known three-component reaction-diffusion (RD) system [K. Aoki et al. Theor. Popul. Biol. 50, 1–17 (1996)] modelling interaction between farmers and hunter-gatherers are constructed for the first time. A wide variety of Q-conditional symmetries are found, and it is shown that these symmetries are not equivalent to the Lie symmetries. Some operators of Q-conditional (non-classical) symmetry are applied for finding exact solutions of the RD system in question. Properties of the exact solutions (in particular, their asymptotic behaviour) are identified and possible biological interpretation is discussed.
In a planar smoothly bounded domain
$\Omega$
, we consider the model for oncolytic virotherapy given by
$$\left\{ \begin{array}{l} u_t = \Delta u - \nabla \cdot (u\nabla v) - uz, \\[1mm] v_t = - (u+w)v, \\[1mm] w_t = d_w \Delta w - w + uz, \\[1mm] z_t = d_z \Delta z - z - uz + \beta w, \end{array} \right.$$
with positive parameters
$ D_w $
,
$ D_z $
and
$\beta$
. It is firstly shown that whenever
$\beta \lt 1$
, for any choice of
$M \gt 0$
, one can find initial data such that the solution of an associated no-flux initial-boundary value problem, well known to exist globally actually for any choice of
$\beta \gt 0$
, satisfies
$$u\ge M \qquad \mbox{in } \Omega\times (0,\infty).$$
If
$\beta \gt 1$
, however, then for arbitrary initial data the corresponding is seen to have the property that
This may be interpreted as indicating that
$\beta$
plays the role of a critical virus replication rate with regard to efficiency of the considered virotherapy, with corresponding threshold value given by
$\beta = 1$
.
In this paper we consider uncertainty principles for solutions of certain partial differential equations on $H$-type groups. We first prove that, on $H$-type groups, the heat kernel is an average of Gaussians in the central variable, so that it does not satisfy a certain reformulation of Hardy’s uncertainty principle. We then prove the analogue of Hardy’s uncertainty principle for solutions of the Schrödinger equation with potential on $H$-type groups. This extends the free case considered by Ben Saïd et al. [‘Uniqueness of solutions to Schrödinger equations on H-type groups’, J. Aust. Math. Soc. (3)95 (2013), 297–314] and by Ludwig and Müller [‘Uniqueness of solutions to Schrödinger equations on 2-step nilpotent Lie groups’, Proc. Amer. Math. Soc.142 (2014), 2101–2118].
The Kudryashov–Sinelshchikov–Olver equation describes pressure waves in liquids with gas bubbles taking into account heat transfer and viscosity. In this paper, we prove the existence of solutions of the Cauchy problem associated with this equation.
In this paper, we consider the monotone travelling wave solutions of a reaction–diffusion epidemic system with nonlocal delays. We obtain the existence of monotone travelling wave solutions by applying abstract existence results. By transforming the nonlocal delayed system to a non-delayed system and choosing suitable small positive constants to define a pair of new upper and lower solutions, we use the contraction technique to prove the asymptotic stability (up to translation) of monotone travelling waves. Furthermore, the uniqueness and Lyapunov stability of monotone travelling wave solutions will be established with the help of the upper and lower solution method and the exponential asymptotic stability.
We consider the well-posedness of a stochastic evolution problem in a bounded Lipschitz domain D ⊂ ℝd with homogeneous Dirichlet boundary conditions and an initial condition in L2(D). The main technical difficulties in proving the result of existence and uniqueness of a solution arise from the nonlinear diffusion-convection operator in divergence form which is given by the sum of a Carathéodory function satisfying p-type growth associated with coercivity assumptions and a Lipschitz continuous perturbation. In particular, we consider the case 1 < p < 2 with an appropriate lower bound on p determined by the space dimension. Another difficulty arises from the fact that the additive stochastic perturbation with values in L2(D) on the right-hand side of the equation does not inherit the Sobolev spatial regularity from the solution as in the multiplicative noise case.
We prove rigidity theorems for ancient solutions of geometric flows of immersed submanifolds. Specifically, we find conditions on the second fundamental form that characterise the shrinking sphere among compact ancient solutions for the mean curvature flow in codimension two surfaces.
Let $X$ be a space of homogeneous type and $L$ be a nonnegative self-adjoint operator on $L^{2}(X)$ satisfying Gaussian upper bounds on its heat kernels. In this paper, we develop the theory of weighted Besov spaces ${\dot{B}}_{p,q,w}^{\unicode[STIX]{x1D6FC},L}(X)$ and weighted Triebel–Lizorkin spaces ${\dot{F}}_{p,q,w}^{\unicode[STIX]{x1D6FC},L}(X)$ associated with the operator $L$ for the full range $0<p,q\leqslant \infty$, $\unicode[STIX]{x1D6FC}\in \mathbb{R}$ and $w$ being in the Muckenhoupt weight class $A_{\infty }$. Under rather weak assumptions on $L$ as stated above, we prove that our new spaces satisfy important features such as continuous characterizations in terms of square functions, atomic decompositions and the identifications with some well-known function spaces such as Hardy-type spaces and Sobolev-type spaces. One of the highlights of our result is the characterization of these spaces via noncompactly supported functional calculus. An important by-product of this characterization is the characterization via the heat kernel for the full range of indices. Moreover, with extra assumptions on the operator $L$, we prove that the new function spaces associated with $L$ coincide with the classical function spaces. Finally we apply our results to prove the boundedness of the fractional power of $L$, the spectral multiplier of $L$ in our new function spaces and the dispersive estimates of wave equations.
Each species is subject to various biotic and abiotic factors during growth. This paper formulates a deterministic model with the consideration of various factors regulating population growth such as age-dependent birth and death rates, spatial movements, seasonal variations, intra-specific competition and time-varying maturation simultaneously. The model takes the form of two coupled reaction–diffusion equations with time-dependent delays, which bring novel challenges to the theoretical analysis. Then, the model is analysed when competition among immatures is neglected, in which situation one equation for the adult population density is decoupled. The basic reproduction number
$\mathcal{R}_0$
is defined and shown to determine the global attractivity of either the zero equilibrium (when
$\mathcal{R}_0\leq 1$
) or a positive periodic solution (
$\mathcal{R}_0\gt1$
) by using the dynamical system approach on an appropriate phase space. When the immature intra-specific competition is included and the immature diffusion rate is neglected, the model is neither cooperative nor reducible to a single equation. In this case, the threshold dynamics about the population extinction and uniform persistence are established by using the newly defined basic reproduction number
$\widetilde{\mathcal{R}}_0$
as a threshold index. Furthermore, numerical simulations are implemented on the population growth of two different species for two different cases to validate the analytic results.
In this article, we consider diffusive transport of a reactive substance in a saturated porous medium including variable porosity. Thereby, the evolution of the microstructure is caused by precipitation of the transported substance. We are particularly interested in analysing the model when the equations degenerate due to clogging. Introducing an appropriate weighted function space, we are able to handle the degeneracy and obtain analytical results for the transport equation. Also the decay behaviour of this solution with respect to the porosity is investigated. There a restriction on the decay order is assumed, that is, besides low initial concentration also dense precipitation leads to possible high decay. We obtain nonnegativity and boundedness for the weak solution to the transport equation. Moreover, we study an ordinary differential equation (ODE) describing the change of porosity. Thereby, the control of an appropriate weighted norm of the gradient of the porosity is crucial for the analysis of the transport equation. In order to obtain global in time solutions to the overall coupled system, we apply a fixed point argument. The problem is solved for substantially degenerating hydrodynamic parameters.
In this paper, we study the nonlinear diffusion equation associated with a particle system where the common drift depends on the rate of absorption of particles at a boundary. We provide an interpretation of this equation, which is also related to the supercooled Stefan problem, as a structural credit risk model with default contagion in a large interconnected banking system. Using the method of heat potentials, we derive a coupled system of Volterra integral equations for the transition density and for the loss through absorption. An approximation by expansion is given for a small interaction parameter. We also present a numerical solution algorithm and conduct computational tests.
We study the steady states and dynamics of a thin-film-type equation with non-conserved mass in one dimension. The evolution equation is a non-linear fourth-order degenerate parabolic partial differential equation (PDE) motivated by a model of volatile viscous fluid films allowing for condensation or evaporation. We show that by changing the sign of the non-conserved flux and breaking from a gradient flow structure, the problem can exhibit novel behaviours including having two distinct classes of co-existing steady-state solutions. Detailed analysis of the bifurcation structure for these steady states and their stability reveals several possibilities for the dynamics. For some parameter regimes, solutions can lead to finite-time rupture singularities. Interestingly, we also show that a finite-amplitude limit cycle can occur as a singular perturbation in the nearly conserved limit.
In a singularly perturbed limit, we analyse the existence and linear stability of steady-state hotspot solutions for an extension of the 1-D three-component reaction-diffusion (RD) system formulated and studied numerically in Jones et. al. [Math. Models. Meth. Appl. Sci., 20, Suppl., (2010)], which models urban crime with police intervention. In our extended RD model, the field variables are the attractiveness field for burglary, the criminal population density and the police population density. Our model includes a scalar parameter that determines the strength of the police drift towards maxima of the attractiveness field. For a special choice of this parameter, we recover the ‘cops-on-the-dots’ policing strategy of Jones et. al., where the police mimic the drift of the criminals towards maxima of the attractiveness field. For our extended model, the method of matched asymptotic expansions is used to construct 1-D steady-state hotspot patterns as well as to derive nonlocal eigenvalue problems (NLEPs) that characterise the linear stability of these hotspot steady states to ${\cal O}$(1) timescale instabilities. For a cops-on-the-dots policing strategy, we prove that a multi-hotspot steady state is linearly stable to synchronous perturbations of the hotspot amplitudes. Alternatively, for asynchronous perturbations of the hotspot amplitudes, a hybrid analytical–numerical method is used to construct linear stability phase diagrams in the police vs. criminal diffusivity parameter space. In one particular region of these phase diagrams, the hotspot steady states are shown to be unstable to asynchronous oscillatory instabilities in the hotspot amplitudes that arise from a Hopf bifurcation. Within the context of our model, this provides a parameter range where the effect of a cops-on-the-dots policing strategy is to only displace crime temporally between neighbouring spatial regions. Our hybrid approach to study the NLEPs combines rigorous spectral results with a numerical parameterisation of any Hopf bifurcation threshold. For the cops-on-the-dots policing strategy, our linear stability predictions for steady-state hotspot patterns are confirmed from full numerical PDE simulations of the three-component RD system.
We prove the existence of global minimisers for a class of attractive–repulsive interaction potentials that are in general not radially symmetric. The global minimisers have compact support. For potentials including degenerate power-law diffusion, the interaction potential can be unbounded from below. Further, a formal calculation indicates that for non-symmetric potentials global minimisers may neither be radial symmetric nor unique.
In a recent paper by Cantrell et al. [9], two-component KPP systems with competition of Lotka–Volterra type were analyzed and their long-time behaviour largely settled. In particular, the authors established that any constant positive steady state, if unique, is necessarily globally attractive. In the present paper, we give an explicit and biologically very natural example of oscillatory three-component system. Using elementary techniques or pre-established theorems, we show that it has a unique constant positive steady state with two-dimensional unstable manifold, a stable limit cycle, a predator–prey structure near the steady state, periodic wave trains and point-to-periodic rapid travelling waves. Numerically, we also show the existence of pulsating fronts and propagating terraces.
We consider two-dimensional mass transport to a finite absorbing strip in a uniform shear flow as a model of surface-based biosensors. The quantity of interest is the Sherwood number Sh, namely the dimensionless net flux onto the strip. Considering early-time absorption, it is a function of the Péclet number Pe and the Damköhler number Da, which, respectively, represent the characteristic magnitude of advection and reaction relative to diffusion. With a view towards modelling nanoscale biosensors, we consider the limit Pe«1. This singular limit is handled using matched asymptotic expansions, with an inner region on the scale of the strip, where mass transport is diffusively dominated, and an outer region at distances that scale as Pe-1/2, where advection enters the dominant balance. At the inner region, the mass concentration possesses a point-sink behaviour at large distances, proportional to Sh. A rescaled concentration, normalised using that number, thus possesses a universal logarithmic divergence; its leading-order correction represents a uniform background concentration. At the outer region, where advection by the shear flow enters the leading-order balance, the strip appears as a point singularity. Asymptotic matching with the concentration field in that region provides the Sherwood number as
wherein β is the background concentration. The latter is determined by the solution of the canonical problem governing the rescaled inner concentration, and is accordingly a function of Da alone. Using elliptic-cylinder coordinates, we have obtained an exact solution of the canonical problem, valid for arbitrary values of Da. It is supplemented by approximate solutions for both small and large Da values, representing the respective limits of reaction- and transport-limited conditions.
The present paper is devoted to the study of the existence, the uniqueness and the stability of transition fronts of non-local dispersal equations in time heterogeneous media of bistable type under the unbalanced condition. We first study space non-increasing transition fronts and prove various important qualitative properties, including uniform steepness, stability, uniform stability and exponential decaying estimates. Then, we show that any transition front, after certain space shift, coincides with a space non-increasing transition front (if it exists), which implies the uniqueness, up-to-space shifts and monotonicity of transition fronts provided that a space non-increasing transition front exists. Moreover, we show that a transition front must be a periodic travelling front in periodic media and asymptotic speeds of transition fronts exist in uniquely ergodic media. Finally, we prove the existence of space non-increasing transition fronts, whose proof does not need the unbalanced condition.
Let n ⩾ 3 and 0 < m < (n − 2)/n. We extend the results of Vazquez and Winkler (2011, J. Evol. Equ. 11, no. 3, 725–742) and prove the uniqueness of finite points blow-up solutions of the fast diffusion equation ut = Δum in both bounded domains and ℝn × (0, ∞). We also construct initial data such that the corresponding solution of the fast diffusion equation in bounded domain oscillates between infinity and some positive constant as t → ∞.
Recently we have proposed a monostable reaction-diffusion system to explain the Neolithic transition from hunter-gatherer life to farmer life in Europe. The system is described by a three-component system for the populations of hunter-gatherer (H), sedentary farmer (F1) and migratory one (F2). The conversion between F1 and F2 is specified by such a way that if the total farmers F1 + F2 are overcrowded, F1 actively changes to F2, while if it is less crowded, the situation is vice versa. In order to include this property in the system, the system incorporates a critical parameter (say F0) depending on the development of farming technology in a monotonically increasing way. It determines whether the total farmers are either over crowded (F1 + F2 >F0) or less crowded (F1 + F2 <F0) ( [9, 20]). Previous numerical studies indicate that the structure of travelling wave solutions of the system is qualitatively similar to the one of the Fisher-KPP equation, that the asymptotically expanding velocity of farmers is equal to the minimal velocity (say cm(F0)) of travelling wave solutions, and that cm(F0) is monotonically decreasing as F0 increases. The latter result suggests that the development of farming technology suppresses the expanding velocity of farmers. As a partial analytical result to this property, the purpose of this paper is to consider the two limiting cases where F0 = 0 and F0 → ∞, and to prove cm(0)>cm(∞).