We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
It is well known that a weak solution φ to the initial boundary value problem for the uniformly parabolic equation $\partial _t\varphi - {\rm div}(A\nabla \varphi ) +\omega \varphi = f $ in $\Omega _T\equiv \Omega \times (0,T)$ satisfies the uniform estimate
$$\Vert \varphi \Vert_{\infty,\Omega_T}\les \Vert \varphi\Vert_{\infty,\partial_p\Omega_T}+c \Vert f \Vert_{q,\Omega_T}, \ \ \ c=c(N,\lambda, q, \Omega_T), $$
provided that $q \gt 1+{N}/{2}$, where Ω is a bounded domain in ${\open R}^N$ with Lipschitz boundary, T > 0, $\partial _p\Omega _T$ is the parabolic boundary of $\Omega _T$, $\omega \in L^1(\Omega _T)$ with $\omega \ges 0$, and λ is the smallest eigenvalue of the coefficient matrix A. This estimate is sharp in the sense that it generally fails if $q=1+{N}/{2}$. In this paper, we show that the linear growth of the upper bound in $\Vert f \Vert_{q,\Omega _T}$ can be improved. To be precise, we establish
$$ \Vert \varphi \Vert_{\infty,\Omega_T}\les \Vert \varphi_0 \Vert_{\infty,\partial_p\Omega_T}+c \Vert f \Vert_{1+{N}/{2},\Omega_T} \left(\ln(\Vert f \Vert_{q,\Omega_T}+1)+1\right). $$
The main purpose of this paper is to study the existence of travelling waves with a critical speed for an influenza model with treatment. By using some analysis techniques that involve super-critical speeds and an approximation method, the existence of travelling waves with the critical speed is proved.
This paper investigates regularity in Lorentz spaces for weak solutions of a class of divergence form quasi-linear parabolic equations with singular divergence-free drifts. In this class of equations, the principal terms are vector field functions that are measurable in ($x,t$)-variable, and nonlinearly dependent on both unknown solutions and their gradients. Interior, local boundary, and global regularity estimates in Lorentz spaces for gradients of weak solutions are established assuming that the solutions are in BMO space, the John–Nirenberg space. The results are even new when the drifts are identically zero, because they do not require solutions to be bounded as in the available literature. In the linear setting, the results of the paper also improve the standard Calderón–Zygmund regularity theory to the critical borderline case. When the principal term in the equation does not depend on the solution as its variable, our results recover and sharpen known available results. The approach is based on the perturbation technique introduced by Caffarelli and Peral together with a “double-scaling parameter” technique and the maximal function free approach introduced by Acerbi and Mingione.
Let n ⩾ 3, 0 ⩽ m < n − 2/n, ρ1 > 0, $\beta>\beta_{0}^{(m)}=(({m\rho_{1}})/({n-2-nm}))$, αm = ((2β + ρ1)/(1 − m)) and α = 2β+ρ1. For any λ > 0, we prove the uniqueness of radially symmetric solution υ(m) of Δ(υm/m) + αmυ + βx · ∇υ = 0, υ > 0, in ℝn∖{0} which satisfies $\lim\nolimits_{|x|\to 0|}|x|^{\alpha _m/\beta }v^{(m)}(x) = \lambda ^{-((\rho _1)/((1-m)\beta ))}$ and obtain higher order estimates of υ(m) near the blow-up point x = 0. We prove that as m → 0+, υ(m) converges uniformly in C2(K) for any compact subset K of ℝn∖{0} to the solution υ of Δlog υ + α υ + β x·∇ υ = 0, υ > 0, in ℝn\{0}, which satisfies $\lim\nolimits_{ \vert x \vert \to 0} \vert x \vert ^{{\alpha}/{\beta}}v(x)=\lambda^{-{\rho_{1}}/{\beta}}$. We also prove that if the solution u(m) of ut = Δ (um/m), u > 0, in (ℝn∖{0}) × (0, T) which blows up near {0} × (0, T) at the rate $ \vert x \vert ^{-{\alpha_{m}}/{\beta}}$ satisfies some mild growth condition on (ℝn∖{0}) × (0, T), then as m → 0+, u(m) converges uniformly in C2 + θ, 1 + θ/2(K) for some constant θ ∈ (0, 1) and any compact subset K of (ℝn∖{0}) × (0, T) to the solution of ut = Δlog u, u > 0, in (ℝn∖{0}) × (0, T). As a consequence of the proof, we obtain existence of a unique radially symmetric solution υ(0) of Δ log υ + α υ + β x·∇ υ = 0, υ > 0, in ℝn∖{0}, which satisfies $\lim\nolimits_{ \vert x \vert \to 0} \vert x \vert ^{{\alpha}/{\beta}}v(x)=\lambda^{-{\rho_{1}}/{\beta}}$.
Pullback attractors with forwards unbounded behaviour are to be found in the literature, but not much is known about pullback attractors with each and every section being unbounded. In this paper, we introduce the concept of unbounded pullback attractor, for which the sections are not required to be compact. These objects are addressed in this paper in the context of a class of non-autonomous semilinear parabolic equations. The nonlinearities are assumed to be non-dissipative and, in addition, defined in such a way that the equation possesses unbounded solutions as the initial time goes to -∞, for each elapsed time. Distinct regimes for the non-autonomous term are taken into account. Namely, we address the small non-autonomous perturbation and the asymptotically autonomous cases.
We study the initial boundary value problem for a fourth-order parabolic equation with nonstandard growth conditions. We establish the local existence of weak solutions and derive the finite time blow-up of solutions with nonpositive initial energy.
We prove a gradient estimate for graphical spacelike mean curvature flow with a general Neumann boundary condition in dimension n = 2. This then implies that the mean curvature flow exists for all time and converges to a translating solution.
The Wasserstein gradient flow structure of the partial differential equation system governing multiphase flows in porous media was recently highlighted in Cancès et al. [Anal. PDE10(8), 1845–1876]. The model can thus be approximated by means of the minimising movement (or JKO after Jordan, Kinderlehrer and Otto [SIAM J. Math. Anal.29(1), 1–17]) scheme that we solve thanks to the ALG2-JKO scheme proposed in Benamou et al. [ESAIM Proc. Surv.57, 1–17]. The numerical results are compared to a classical upstream mobility finite volume scheme, for which strong stability properties can be established.
This paper is concerned with two frequency-dependent susceptible–infected–susceptible epidemic reaction–diffusion models in heterogeneous environment, with a cross-diffusion term modelling the effect that susceptible individuals tend to move away from higher concentration of infected individuals. It is first shown that the corresponding Neumann initial-boundary value problem in an n-dimensional bounded smooth domain possesses a unique global classical solution which is uniformly in-time bounded regardless of the strength of the cross-diffusion and the spatial dimension n. It is further shown that, even in the presence of cross-diffusion, the models still admit threshold-type dynamics in terms of the basic reproduction number $\mathcal {R}_0$ – i.e. the unique disease-free equilibrium is globally stable if $\mathcal {R}_0\lt1$, while if $\mathcal {R}_0\gt1$, the disease is uniformly persistent and there is an endemic equilibrium (EE), which is globally stable in some special cases with weak chemotactic sensitivity. Our results on the asymptotic profiles of EE illustrate that restricting the motility of susceptible population may eliminate the infectious disease entirely for the first model with constant total population but fails for the second model with varying total population. In particular, this implies that such cross-diffusion does not contribute to the elimination of the infectious disease modelled by the second one.
The present work is part of a series of studies conducted by the authors on analytical models of avascular tumour growth that exhibit both geometrical anisotropy and physical inhomogeneity. In particular, we consider a tumour structure formed in distinct ellipsoidal regions occupied by cell populations at a certain stage of their biological cycle. The cancer cells receive nutrient by diffusion from an inhomogeneous supply and they are subject to also an inhomogeneous pressure field imposed by the tumour microenvironment. It is proved that the lack of symmetry is strongly connected to a special condition that should hold between the data imposed by the tumour’s surrounding medium, in order for the ellipsoidal growth to be realizable, a feature already present in other non-symmetrical yet more degenerate models. The nutrient and the inhibitor concentration, as well as the pressure field, are provided in analytical fashion via closed-form series solutions in terms of ellipsoidal eigenfunctions, while their behaviour is demonstrated by indicative plots. The evolution equation of all the tumour’s ellipsoidal interfaces is postulated in ellipsoidal terms and a numerical implementation is provided in view of its solution. From the mathematical point of view, the ellipsoidal system is the most general coordinate system that the Laplace operator, which dominates the mathematical models of avascular growth, enjoys spectral decomposition. Therefore, we consider the ellipsoidal model presented in this work, as the most general analytic model describing the avascular growth in inhomogeneous environment. Additionally, due to the intrinsic degrees of freedom inherited to the model by the ellipsoidal geometry, the ellipsoidal model presented can be adapted to a very populous class of avascular tumours, varying in figure and in orientation.
We consider the pricing of European options under a modified Black–Scholes equation having fractional derivatives in the “spatial” (price) variable. To be specific, the underlying price is assumed to follow a geometric Koponen–Boyarchenko–Levendorski process. This pure jump Lévy process could better capture the real behaviour of market data. Despite many difficulties caused by the “globalness” of the fractional derivatives, we derive an explicit closed-form analytical solution by solving the fractional partial differential equation analytically, using the Fourier transform technique. Based on the newly derived formula, we also examine, in theory, many basic properties of the option price under the current model. On the other hand, for practical purposes, we impose a reliable implementation method for the current formula so that it can be easily used in the trading market. With the numerical results, the impact of different parameters on the option price are also investigated.
We propose a numerical method for the simulation of a quasi-linear parabolic biofilm model that exhibits three non-linear diffusion effects: (i) a power law degeneracy, (ii) a super diffusion singularity and (iii) non-linear cross-diffusion. The method is based on a spatial Finite Volume discretisation in which cross-diffusion terms are formally treated as convection terms. Time-integration of the resulting semi-discretised system is carried out using an error-controlled, time-adaptive, embedded Rosenbrock–Wanner method. We compare several variants of the method and two variants of the model to investigate how details such as the choice cross-diffusion coefficients, and specific variants of the time integrator affect simulation time.
We study a class of parabolic equations which can be viewed as a generalized mean curvature flow acting on cylindrically symmetric surfaces with a Dirichlet condition on the boundary. We prove the existence of a unique solution by means of an approximation scheme. We also develop the theory of asymptotic stability for solutions of general parabolic problems.
We study the effect of algebraically localized impurities on striped phases in one spatial dimension. We therefore develop a functional-analytic framework that allows us to cast the perturbation problem as a regular Fredholm problem despite the presence of the essential spectrum, caused by the soft translational mode. Our results establish the selection of jumps in wavenumber and phase, depending on the location of the impurity and the average wavenumber in the system. We also show that, for select locations, the jump in the wavenumber vanishes.
We consider a curvature flow $V=\unicode[STIX]{x1D705}+A$ in a two-dimensional undulating cylinder $\unicode[STIX]{x1D6FA}$ described by $\unicode[STIX]{x1D6FA}:=\{(x,y)\in \mathbb{R}^{2}\mid -g_{1}(y)<x<g_{2}(y),y\in \mathbb{R}\}$, where $V$ is the normal velocity of a moving curve contacting the boundaries of $\unicode[STIX]{x1D6FA}$ perpendicularly, $\unicode[STIX]{x1D705}$ is its curvature, $A>0$ is a constant and $g_{1}(y),g_{2}(y)$ are positive smooth functions. If $g_{1}$ and $g_{2}$ are periodic functions and there are no stationary curves, Matano et al. [‘Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit’, Netw. Heterog. Media1 (2006), 537–568] proved the existence of a periodic travelling wave. We consider the case where $g_{1},g_{2}$ are general nonperiodic positive functions and the problem has some stationary curves. For each stationary curve $\unicode[STIX]{x1D6E4}$ unstable from above/below, we construct an entire solution growing out of it, that is, a solution curve $\unicode[STIX]{x1D6E4}_{t}$ which increases/decreases monotonically, converging to $\unicode[STIX]{x1D6E4}$ as $t\rightarrow -\infty$ and converging to another stationary curve or to $+\infty /-\infty$ as $t\rightarrow \infty$.
We study the dynamics of a reaction–diffusion–advection equation $u_{t}=u_{xx}-au_{x}+f(u)$ on the right half-line with Robin boundary condition $u_{x}=au$ at $x=0$, where $f(u)$ is a combustion nonlinearity. We show that, when $0<a<c$ (where $c$ is the travelling wave speed of $u_{t}=u_{xx}+f(u)$), $u$ converges in the $L_{loc}^{\infty }([0,\infty ))$ topology either to $0$ or to a positive steady state; when $a\geq c$, a solution $u$ starting from a small initial datum tends to $0$ in the $L^{\infty }([0,\infty ))$ topology, but this is not true for a solution starting from a large initial datum; when $a>c$, such a solution converges to $0$ in $L_{loc}^{\infty }([0,\infty ))$ but not in $L^{\infty }([0,\infty ))$ topology.
This paper is concerned with the global dynamics and spreading speeds of a partially degenerate non-local dispersal system with monostable nonlinearity in periodic habitats. We first obtain the existence of the principal eigenvalue for a periodic eigenvalue problem with partially degenerate non-local dispersal. Then we study the coexistence and extinction dynamics. Finally, the existence and characterization of spreading speeds are considered. In particular, we show that the spreading speed is linearly determinate. Overall, we extend the existing results on global dynamics and spreading speeds for the degenerate reaction–diffusion system to the degenerate non-local dispersal case. The extension is non-trivial and meaningful.
The paper studies large time behaviour of solutions to the Keller–Segel system with quadratic degradation in a liquid environment, as given by
under Neumann boundary conditions in a bounded domain Ω ⊂ ℝn, where n ≥ 1 is arbitrary. It is shown that whenever U : Ω × (0,∞) → ℝn is a bounded and sufficiently regular solenoidal vector field any non-trivial global bounded solution of (⋆) approaches the trivial equilibrium at a rate that, with respect to the norm in either of the spaces L1(Ω) and L∞(Ω), can be controlled from above and below by appropriate multiples of 1/(t + 1). This underlines that, even up to this quantitative level of accuracy, the large time behaviour in (⋆) is essentially independent not only of the particular fluid flow, but also of any effect originating from chemotactic cross-diffusion. The latter is in contrast to the corresponding Cauchy problem, for which known results show that in the n = 2 case the presence of chemotaxis can significantly enhance biomixing by reducing the respective spatial L1 norms of solutions.
A classification of the behaviour of the solutions f(·, a) to the ordinary differential equation (|f′|p-2f′)′ + f - |f′|p-1 = 0 in (0,∞) with initial condition f(0, a) = a and f′(0, a) = 0 is provided, according to the value of the parameter a > 0 when the exponent p takes values in (1, 2). There is a threshold value a* that separates different behaviours of f(·, a): if a > a*, then f(·, a) vanishes at least once in (0,∞) and takes negative values, while f(·, a) is positive in (0,∞) and decays algebraically to zero as r→∞ if a ∊ (0, a*). At the threshold value, f(·, a*) is also positive in (0,∞) but decays exponentially fast to zero as r→∞. The proof of these results relies on a transformation to a first-order ordinary differential equation and a monotonicity property with respect to a > 0. This classification is one step in the description of the dynamics near the extinction time of a diffusive Hamilton–Jacobi equation with critical gradient absorption and fast diffusion.