To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In the so-called lightbulb process, on days r = 1,…,n, out of n lightbulbs, all initially off, exactly r bulbs, selected uniformly and independent of the past, have their status changed from off to on, or vice versa. With X the number of bulbs on at the terminal time n, an even integer, and μ = n/2, σ2 = var(X), we have supz ∈ R | P((X - μ)/σ ≤ z) - P(Z ≤ z) | ≤ nΔ̅0/2σ2 + 1.64n/σ3 + 2/σ, where Z is a standard normal random variable and Δ̅0 = 1/2√n + 1/2n + e−n/2/3 for n ≥ 6, yielding a bound of order O(n−1/2) as n → ∞. A similar, though slightly larger bound, holds for odd n. The results are shown using a version of Stein's method for bounded, monotone size bias couplings. The argument for even n depends on the construction of a variable Xs on the same space as X that has the X-size bias distribution, that is, which satisfies E[Xg(X)] = μE[g(Xs)] for all bounded continuous g, and for which there exists a B ≥ 0, in this case B = 2, such that X ≤ Xs ≤ X + B almost surely. The argument for odd n is similar to that for even n, but one first couples X closely to V, a symmetrized version of X, for which a size bias coupling of V to Vs can proceed as in the even case. In both the even and odd cases, the crucial calculation of the variance of a conditional expectation requires detailed information on the spectral decomposition of the lightbulb chain.
Let Xn be a sequence of integrable real random variables, adapted to a filtration (Gn). Define Cn = √{(1 / n)∑k=1nXk − E(Xn+1 | Gn)} and Dn = √n{E(Xn+1 | Gn) − Z}, where Z is the almost-sure limit of E(Xn+1 | Gn) (assumed to exist). Conditions for (Cn, Dn) → N(0, U) x N(0, V) stably are given, where U and V are certain random variables. In particular, under such conditions, we obtain √n{(1 / n)∑k=1nX_k - Z} = Cn + Dn → N(0, U + V) stably. This central limit theorem has natural applications to Bayesian statistics and urn problems. The latter are investigated, by paying special attention to multicolor randomly reinforced urns.
In this paper we study the stability of queueing systems with impatient customers and a single server operating under a FIFO (first-in-first-out) discipline. We first give a sufficient condition for the existence of a stationary workload in the case of impatience until the beginning of service. We then provide a weaker condition of existence on an enriched probability space using the theory of Anantharam et al. (1997), (1999). The case of impatience until the end of service is also investigated.
According to the Skitovich–Darmois theorem, the independence of two linear forms of n independent random variables implies that the random variables are Gaussian. We consider the case where independent random variables take values in a second countable locally compact abelian group X, and coefficients of the forms are topological automorphisms of X. We describe a wide class of groups X for which a group-theoretic analogue of the Skitovich–Darmois theorem holds true when n=2.
In this paper the theory of species sampling sequences is linked to the theory of conditionally identically distributed sequences in order to enlarge the set of species sampling sequences which are mathematically tractable. The conditional identity in distribution (see Berti, Pratelli and Rigo (2004)) is a new type of dependence for random variables, which generalizes the well-known notion of exchangeability. In this paper a class of random sequences, called generalized species sampling sequences, is defined and a condition to have conditional identity in distribution is given. Moreover, two types of generalized species sampling sequence that are conditionally identically distributed are introduced and studied: the generalized Poisson-Dirichlet sequence and the generalized Ottawa sequence. Some examples are discussed.
In this paper we propose a framework that facilitates the study of large deviations for point processes based on stationary sequences with regularly varying tails. This framework allows us to keep track both of the magnitude of the extreme values of a process and the order in which these extreme values appear. Particular emphasis is put on (infinite) linear processes with random coefficients. The proposed framework provides a fairly complete description of the joint asymptotic behavior of the large values of the stationary sequence. We apply the general result on large deviations for point processes to derive the asymptotic decay of certain probabilities related to partial sum processes as well as ruin probabilities.
Let X be a countable discrete abelian group with automorphism group Aut(X). Let ξ1 and ξ2 be independent X-valued random variables with distributions μ1 and μ2, respectively. Suppose that α1,α2,β1,β2∈Aut(X) and β1α−11±β2α−12∈Aut(X). Assuming that the conditional distribution of the linear form L2 given L1 is symmetric, where L2=β1ξ1+β2ξ2 and L1=α1ξ1+α2ξ2, we describe all possibilities for the μj. This is a group-theoretic analogue of Heyde’s characterization of Gaussian distributions on the real line.
We consider the operation of an insurer with a large initial surplus x>0. The insurer's surplus process S(t) (with S(0)=x) evolves in the range S(t)≥ 0 as a generalized renewal process with positive mean drift and with jumps at time epochs T1,T2,…. At the time Tη(x) when the process S(t) first becomes negative, the insurer's ruin (in the ‘classical’ sense) occurs, but the insurer can borrow money via a line of credit. After this moment the process S(t) behaves as a solution to a certain stochastic differential equation which, in general, depends on the indebtedness, -S(t). This behavior of S(t) lasts until the time θ(x,y) at which the indebtedness reaches some ‘critical’ level y>0. At this moment the line of credit will be closed and the insurer's absolute ruin occurs with deficit -S(θ(x,y)). We find the asymptotics of the absolute ruin probability and the limiting distributions of η(x), θ(x,y), and -S(θ(x,y)) as x → ∞, assuming that the claim distribution is regularly varying. The second-order approximation to the absolute ruin probability is also obtained. The abovementioned results are obtained by using limiting theorems for the joint distribution of η(x) and -S(Tη(x)).
Motivated by Feller's coin-tossing problem, we consider the problem of conditioning an irreducible Markov chain never to wait too long at 0. Denoting by τ the first time that the chain, X, waits for at least one unit of time at the origin, we consider conditioning the chain on the event (τ›T). We show that there is a weak limit as T→∞ in the cases where either the state space is finite or X is transient. We give sufficient conditions for the existence of a weak limit in other cases and show that we have vague convergence to a defective limit if the time to hit zero has a lighter tail than τ and τ is subexponential.
We investigate the almost sure asymptotic properties of vector martingale transforms. Assuming some appropriate regularity conditions both on the increasing process and on the moments of the martingale, we prove that normalized moments of any even order converge in the almost sure central limit theorem for martingales. A conjecture about almost sure upper bounds under wider hypotheses is formulated. The theoretical results are supported by examples borrowed from statistical applications, including linear autoregressive models and branching processes with immigration, for which new asymptotic properties are established on estimation and prediction errors.
Classical results for exchangeable systems of random variables are extended to multiclass systems satisfying a natural partial exchangeability assumption. It is proved that the conditional law of a finite multiclass system, given the value of the vector of the empirical measures of its classes, corresponds to independent uniform orderings of the samples within {each} class, and that a family of such systems converges in law {if and only if} the corresponding empirical measure vectors converge in law. As a corollary, convergence within {each} class to an infinite independent and identically distributed system implies asymptotic independence between {different} classes. A result implying the Hewitt-Savage 0-1 law is also extended.
In this paper we present a stability criterion for processor-sharing queues, in which the throughput may depend on the number of customers in the system (such as in the case of interferences between users). Such a system is represented by a point measure-valued stochastic recursion keeping track of the remaining processing times of the customers.
For a spectrally negative Lévy process X on the real line, let S denote its supremum process and let I denote its infimum process. For a > 0, let τ(a) and κ(a) denote the times when the reflected processes Ŷ := S − X and Y := X − I first exit level a, respectively; let τ−(a) and κ−(a) denote the times when X first reaches Sτ(a) and Iκ(a), respectively. The main results of this paper concern the distributions of (τ(a), Sτ(a), τ−(a), Ŷτ(a)) and of (κ(a), Iκ(a), κ−(a)). They generalize some recent results on spectrally negative Lévy processes. Our approach relies on results concerning the solution to the two-sided exit problem for X. Such an approach is also adapted to study the excursions for the reflected processes. More explicit expressions are obtained when X is either a Brownian motion with drift or a completely asymmetric stable process.
We consider a two-color, randomly reinforced urn with equal reinforcement distributions and we characterize the distribution of the urn's limit proportion as the unique continuous solution of a functional equation involving unknown probability distributions on [0, 1].
Suppose we are given the free product V of a finite family of finite or countable sets (Vi)i∈∮ and probability measures on each Vi, which govern random walks on it. We consider a transient random walk on the free product arising naturally from the random walks on the Vi. We prove the existence of the rate of escape with respect to the block length, that is, the speed at which the random walk escapes to infinity, and furthermore we compute formulae for it. For this purpose, we present three different techniques providing three different, equivalent formulae.
In this paper we propose a new method of determining the stability of queueing systems. We attain it using the absorbing process and introduce the untraceable events method to show the existence of the absorbing process. The advantage of our method is that we are able to discuss the stability of various variables for both discrete and continuous parameters in a general framework with nonstationary input. An untraceable event has the property that the state loses the memory of its origin. In a concrete model, we use the boundedness of the state at an epoch in time with respect to the initial condition and choose the form of the untraceable event corresponding to the input distribution.
A more general definition of MTP2 (multivariate total positivity of order 2) probability measure is given, without assuming the existence of a density. Under this definition the class of MTP2 measures is proved to be closed under weak convergence. Characterizations of the MTP2 property are proved under this more general definition. Then a precise definition of conditionally increasing measure is provided, and closure under weak convergence of the class of conditionally increasing measures is proved. As an application we investigate MTP2 properties of stationary distributions of Markov chains, which are of interest in actuarial science.
Let (Xt)t≥0 be a continuous-time irreducible Markov chain on a finite state space E, let v: E→ℝ\{0}, and let (φt)t≥0 be defined by φt=∫0tv(Xs)d s. We consider the case in which the process (φt)t≥0 is oscillating and that in which (φt)t≥0 has a negative drift. In each of these cases, we condition the process (Xt,φt)t≥0 on the event that (φt)t≥0 hits level y before hitting 0 and prove weak convergence of the conditioned process as y→∞. In addition, we show the relationship between the conditioning of the process (φt)t≥0 with a negative drift to oscillate and the conditioning of it to stay nonnegative for a long time, and the relationship between the conditioning of (φt)t≥0 with a negative drift to drift to ∞ and the conditioning of it to hit large levels before hitting 0.
Let (Xt)t≥0 be a continuous-time irreducible Markov chain on a finite state space E, let v be a map v: E→ℝ\{0}, and let (φt)t≥0 be an additive functional defined by φt=∫0tv(Xs)d s. We consider the case in which the process (φt)t≥0 is oscillating and that in which (φt)t≥0 has a negative drift. In each of these cases, we condition the process (Xt,φt)t≥0 on the event that (φt)t≥0 is nonnegative until time T and prove weak convergence of the conditioned process as T→∞.
In this paper, we introduce the minimum dynamic discrimination information (MDDI) approach to probability modeling. The MDDI model relative to a given distribution G is that which has least Kullback-Leibler information discrepancy relative to G, among all distributions satisfying some information constraints given in terms of residual moment inequalities, residual moment growth inequalities, or hazard rate growth inequalities. Our results lead to MDDI characterizations of many well-known lifetime models and to the development of some new models. Dynamic information constraints that characterize these models are tabulated. A result for characterizing distributions based on dynamic Rényi information divergence is also given.