We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given a sequence (Mk, Qk)k ≥ 1 of independent and identically distributed random vectors with nonnegative components, we consider the recursive Markov chain (Xn)n ≥ 0, defined by the random difference equation Xn = MnXn - 1 + Qn for n ≥ 1, where X0 is independent of (Mk, Qk)k ≥ 1. Criteria for the null recurrence/transience are provided in the situation where (Xn)n ≥ 0 is contractive in the sense that M1 ⋯ Mn → 0 almost surely, yet occasional large values of the Qn overcompensate the contractive behavior so that positive recurrence fails to hold. We also investigate the attractor set of (Xn)n ≥ 0 under the sole assumption that this chain is locally contractive and recurrent.
In this paper we consider the optimal scaling of high-dimensional random walk Metropolis algorithms for densities differentiable in the Lp mean but which may be irregular at some points (such as the Laplace density, for example) and/or supported on an interval. Our main result is the weak convergence of the Markov chain (appropriately rescaled in time and space) to a Langevin diffusion process as the dimension d goes to ∞. As the log-density might be nondifferentiable, the limiting diffusion could be singular. The scaling limit is established under assumptions which are much weaker than the one used in the original derivation of Roberts et al. (1997). This result has important practical implications for the use of random walk Metropolis algorithms in Bayesian frameworks based on sparsity inducing priors.
The Horton–Strahler ordering method, originating in hydrology, formulates the hierarchical structure of branching patterns using a quantity called the bifurcation ratio. The main result of this paper is the central limit theorem for the bifurcation ratio of a general branch order. This is a generalized form of the central limit theorem for the lowest bifurcation ratio, which was previously proved. Some useful relations regarding the Horton–Strahler analysis are also derived in the proofs of the main theorems.
We consider transport networks with nodes scattered at random in a large domain. At certain local rates, the nodes generate traffic flows according to some navigation scheme in a given direction. In the thermodynamic limit of a growing domain, we present an asymptotic formula expressing the local traffic flow density at any given location in the domain in terms of three fundamental characteristics of the underlying network: the spatial intensity of the nodes together with their traffic generation rates, and of the links induced by the navigation. This formula holds for a general class of navigations satisfying a link-density and a sub-ballisticity condition. As a specific example, we verify these conditions for navigations arising from a directed spanning tree on a Poisson point process with inhomogeneous intensity function.
Stochastic encounter-mating (SEM) models describe monogamous permanent pair formation in finite zoological populations of multitype females and males. In this paper we study SEM models with Poisson firing times. First, we prove that the model enjoys a fluid limit as the population size diverges, that is, the stochastic dynamics converges to a deterministic system governed by coupled ordinary differential equations (ODEs). Then we convert these ODEs to the well-known Lotka–Volterra and replicator equations from population dynamics. Next, under the so-called fine balance condition which characterizes panmixia, we solve the corresponding replicator equations and give an exact expression for the fluid limit. Finally, we consider the case with two types of female and male. Without the fine balance assumption, but under certain symmetry conditions, we give an explicit formula for the limiting mating pattern, and then use it to characterize assortative mating.
Subsolutions to the Hamilton–Jacobi–Bellman equation associated with a moderate deviations approximation are used to design importance sampling changes of measure for stochastic recursive equations. Analogous to what has been done for large deviations subsolution-based importance sampling, these schemes are shown to be asymptotically optimal under the moderate deviations scaling. We present various implementations and numerical results to contrast their performance, and also discuss the circumstances under which a moderate deviation scaling might be appropriate.
Two different ways of trimming the sample path of a stochastic process in 𝔻[0, 1]: global ('trim as you go') trimming and record time ('lookback') trimming are analysed to find conditions for the corresponding operators to be continuous with respect to the (strong) J1-topology. A key condition is that there should be no ties among the largest ordered jumps of the limit process. As an application of the theory, via the continuous mapping theorem, we prove limit theorems for trimmed Lévy processes, using the functional convergence of the underlying process to a stable process. The results are applied to a reinsurance ruin time problem.
In this paper we treat a pure death process coming down from infinity as a natural generalization of the death process associated with the Kingman coalescent. We establish a number of limit theorems including a strong law of large numbers and a large deviation theorem.
Markov chain Monte Carlo (MCMC) methods provide an essential tool in statistics for sampling from complex probability distributions. While the standard approach to MCMC involves constructing discrete-time reversible Markov chains whose transition kernel is obtained via the Metropolis–Hastings algorithm, there has been recent interest in alternative schemes based on piecewise deterministic Markov processes (PDMPs). One such approach is based on the zig-zag process, introduced in Bierkens and Roberts (2016), which proved to provide a highly scalable sampling scheme for sampling in the big data regime; see Bierkens et al. (2016). In this paper we study the performance of the zig-zag sampler, focusing on the one-dimensional case. In particular, we identify conditions under which a central limit theorem holds and characterise the asymptotic variance. Moreover, we study the influence of the switching rate on the diffusivity of the zig-zag process by identifying a diffusion limit as the switching rate tends to ∞. Based on our results we compare the performance of the zig-zag sampler to existing Monte Carlo methods, both analytically and through simulations.
Consider a haploid population of fixed finite size with a finite number of allele types and having Cannings exchangeable genealogy with neutral mutation. The stationary distribution of the Markov chain of allele counts in each generation is an important quantity in population genetics but has no tractable description in general. We provide upper bounds on the distributional distance between the Dirichlet distribution and this finite-population stationary distribution for the Wright–Fisher genealogy with general mutation structure and the Cannings exchangeable genealogy with parent independent mutation structure. In the first case, the bound is small if the population is large and the mutations do not depend too much on parent type; 'too much' is naturally quantified by our bound. In the second case, the bound is small if the population is large and the chance of three-mergers in the Cannings genealogy is small relative to the chance of two-mergers; this is the same condition to ensure convergence of the genealogy to Kingman's coalescent. These results follow from a new development of Stein's method for the Dirichlet distribution based on Barbour's generator approach and a probabilistic description of the semigroup of the Wright–Fisher diffusion due to Griffiths and Li (1983) and Tavaré (1984).
We consider a general class of epidemic models obtained by applying the random time changes of Ethier and Kurtz (2005) to a collection of Poisson processes and we show the large deviation principle for such models. We generalise the approach followed by Dolgoarshinnykh (2009) in the case of the SIR epidemic model. Thanks to an additional assumption which is satisfied in many examples, we simplify the recent work of Kratz and Pardoux (2017).
We study the rare-event behavior of the workload process in a transitory queue, where the arrival epochs (or 'points') of a finite number of jobs are assumed to be the ordered statistics of independent and identically distributed (i.i.d.) random variables. The service times (or 'marks') of the jobs are assumed to be i.i.d. random variables with a general distribution, that are jointly independent of the arrival epochs. Under the assumption that the service times are strictly positive, we derive the large deviations principle (LDP) satisfied by the workload process. The analysis leverages the connection between ordered statistics and self-normalized sums of exponential random variables to establish the LDP. In this paper we present the first analysis of rare events in transitory queueing models, supplementing prior work that has focused on fluid and diffusion approximations.
Taylor's law (TL) originated as an empirical pattern in ecology. In many sets of samples of population density, the variance of each sample was approximately proportional to a power of the mean of that sample. In a family of nonnegative random variables, TL asserts that the population variance is proportional to a power of the population mean. TL, sometimes called fluctuation scaling, holds widely in physics, ecology, finance, demography, epidemiology, and other sciences, and characterizes many classical probability distributions and stochastic processes such as branching processes and birth-and-death processes. We demonstrate analytically for the first time that a version of TL holds for a class of distributions with infinite mean. These distributions, a subset of stable laws, and the associated TL differ qualitatively from those of light-tailed distributions. Our results employ and contribute to the methodology of Albrecher and Teugels (2006) and Albrecher et al. (2010). This work opens a new domain of investigation for generalizations of TL.
The present paper is devoted to complete convergence and the strong law of large numbers under moment conditions near those of the law of the single logarithm (LSL) for independent and identically distributed arrays. More precisely, we investigate limit theorems under moment conditions which are stronger than $2p$ for any $p<2$, in which case we know that there is almost sure convergence to 0, and weaker than $E\,X^{4}/(\log ^{+}|X|)^{2}<\infty$, in which case the LSL holds.
We consider a class of Sevastyanov branching processes with nonhomogeneous Poisson immigration. These processes relax the assumption required by the Bellman–Harris process which imposes the lifespan and offspring of each individual to be independent. They find applications in studies of the dynamics of cell populations. In this paper we focus on the subcritical case and examine asymptotic properties of the process. We establish limit theorems, which generalize classical results due to Sevastyanov and others. Our key findings include a novel law of large numbers and a central limit theorem which emerge from the nonhomogeneity of the immigration process.
A critical branching process {Zk, k = 0, 1, 2, ...} in a random environment is considered. A conditional functional limit theorem for the properly scaled process {log Zpu, 0 ≤ u < ∞} is established under the assumptions that Zn > 0 and p ≪ n. It is shown that the limiting process is a Lévy process conditioned to stay nonnegative. The proof of this result is based on a limit theorem describing the distribution of the initial part of the trajectories of a driftless random walk conditioned to stay nonnegative.
In this paper we consider a diffusive stochastic predator–prey model with a nonlinear functional response and the randomness is assumed to be of Gaussian nature. A large deviation principle is established for solution processes of the considered model by implementing the weak convergence technique.
We prove a second-order limit law for additive functionals of a d-dimensional fractional Brownian motion with Hurst index H = 1 / d, using the method of moments and extending the Kallianpur–Robbins law, and then give a functional version of this result. That is, we generalize it to the convergence of the finite-dimensional distributions for corresponding stochastic processes.
Importance sampling has become an important tool for the computation of extreme quantiles and tail-based risk measures. For estimation of such nonlinear functionals of the underlying distribution, the standard efficiency analysis is not necessarily applicable. In this paper we therefore study importance sampling algorithms by considering moderate deviations of the associated weighted empirical processes. Using a delta method for large deviations, combined with classical large deviation techniques, the moderate deviation principle is obtained for importance sampling estimators of two of the most common risk measures: value at risk and expected shortfall.
The Pitman–Yor process is a random discrete measure. The random weights or masses follow the two-parameter Poisson–Dirichlet distribution with parameters 0 < α < 1, θ > -α. The parameters α and θ correspond to the stable and gamma components, respectively. The distribution of atoms is given by a probability η. In this paper we consider the limit theorems for the Pitman–Yor process and the two-parameter Poisson–Dirichlet distribution. These include the law of large numbers, fluctuations, and moderate or large deviation principles. The limiting procedures involve either α tending to 0 or 1. They arise naturally in genetics and physics such as the asymptotic coalescence time for explosive branching process and the approximation to the generalized random energy model for disordered systems.