We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The study of high-dimensional distributions is of interest in probability theory, statistics, and asymptotic convex geometry, where the object of interest is the uniform distribution on a convex set in high dimensions. The ℓp-spaces and norms are of particular interest in this setting. In this paper we establish a limit theorem for distributions on ℓp-spheres, conditioned on a rare event, in a high-dimensional geometric setting. As part of our proof, we establish a certain large deviation principle that is also relevant to the study of the tail behavior of random projections of ℓp-balls in a high-dimensional Euclidean space.
The Quicksort process R (Rösler (2018)) can be characterized as the unique endogenous solution of the inhomogeneous stochastic fixed point equation R=D(UR1(1∧t∕U)+𝟭{U<t}(1-U)R2((t-U)∕(1-U))+C(U,t))t on the space 𝒟 of càdlàg functions, such that R(1) has the Quicksort distribution. In this paper we characterize all 𝒟-valued solutions of that equation. Every solution can be represented as the convolution of a solution of the inhomogeneous equation and a general solution of the homogeneous equation (Rüschendorf (2006)). The general solutions of the homogeneous equation are the distributions of Cauchy processes Y with constant drift. Any distribution of R+Y for independent R and Y is a solution of the inhomogeneous equation. Every solution of the inhomogeneous equation is of the form R+Y, where R and Y are independent. The endogenous solutions for the inhomogeneous equation are the shifted Quicksort process distributions. In comparison, the Quicksort distribution is the endogenous solution of the Quicksort fixed point equation unique up to a constant (Rösler (1991)). The general solution can be represented as the convolution of the shifted Quicksort distribution and some symmetric Cauchy distribution (Fill and Janson (2000)), possibly degenerate.
Genealogical constructions of population processes provide models which simultaneously record the forward-in-time evolution of the population size (and distribution of locations and types for models that include them) and the backward-in-time genealogies of the individuals in the population at each time t. A genealogical construction for continuous-time Markov branching processes from Kurtz and Rodrigues (2011) is described and exploited to give the normalized limit in the supercritical case. A Seneta‒Heyde norming is identified as a solution of an ordinary differential equation. The analogous results are given for continuous-state branching processes, including proofs of the normalized limits of Grey (1974) in both the supercritical and critical/subcritical cases.
Let Xn(k) be the number of vertices at level k in a random recursive tree with n+1 vertices. We are interested in the asymptotic behavior of Xn(k) for intermediate levels k=kn satisfying kn→∞ and kn=o(logn) as n→∞. In particular, we prove weak convergence of finite-dimensional distributions for the process (Xn ([knu]))u>0, properly normalized and centered, as n→∞. The limit is a centered Gaussian process with covariance (u,v)↦(u+v)−1. One-dimensional distributional convergence of Xn(kn), properly normalized and centered, was obtained with the help of analytic tools by Fuchs et al. (2006). In contrast, our proofs, which are probabilistic in nature, exploit a connection of our model with certain Crump–Mode–Jagers branching processes.
Let Sn,n≥1, be the successive sums of the payoffs in the classical St. Petersburg game. The celebrated Feller weak law states that Sn∕(nlog2n)→ℙ1 as n→∞. In this paper we review some earlier results of ours and extend some of them as we consider an asymmetric St. Petersburg game, in which the distribution of the payoff X is given by ℙ(X=srk-1)=pqk-1,k=1,2,…, where p+q=1 and s,r>0. Two main results are extensions of the Feller weak law and the convergence in distribution theorem of Martin-Löf (1985). Moreover, it is well known that almost-sure convergence fails, though Csörgő and Simons (1996) showed that almost-sure convergence holds for trimmed sums and also for sums trimmed by an arbitrary fixed number of maxima. In view of the discreteness of the distribution we focus on `max-trimmed sums', that is, on the sums trimmed by the random number of observations that are equal to the largest one, and prove limit theorems for simply trimmed sums, for max-trimmed sums, as well as for the `total maximum'. Analogues with respect to the random number of summands equal to the minimum are also obtained and, finally, for joint trimming.
Khintchine's (necessary and sufficient) slowly varying function condition for the weak law of large numbers (WLLN) for the sum of n nonnegative, independent and identically distributed random variables is used as an overarching (sufficient) condition for the case that the number of summands is more generally [cn],cn→∞. Either the norming sequence {an},an→∞, or the number of summands sequence {cn}, can be chosen arbitrarily. This theorem generalizes results from a motivating branching process setting in which Khintchine's sufficient condition is automatically satisfied. A second theorem shows that Khintchine's condition is necessary for the generalized WLLN when it holds with cn→∞ and an→∞. Theorem 3, which is known, gives a necessary and sufficient condition for Khintchine's WLLN to hold with cn=n and an a specific function of n; it is extended to general cn subject to a growth restriction in Theorem 4. Section 6 returns to the branching process setting.
Introduced recently in mathematical finance by Bayer et al. (2016), the rough Bergomi model has proved particularly efficient to calibrate option markets. We investigate some of its probabilistic properties, in particular proving a pathwise large deviations principle for a small-noise version of the model. The exponential function (continuous but superlinear) as well as the drift appearing in the volatility process fall beyond the scope of existing results, and a dedicated analysis is needed.
Tail asymptotics of the solution R to a fixed-point problem of the type R=DQ+∑1NRm are derived under heavy-tailed conditions allowing both dependence between Q and N and the tails to be of the same order of magnitude. Similar results are derived for a K-class version with applications to multi-type branching processes and busy periods in multi-class queues.
In this paper we consider a new type of urn scheme, where the selection probabilities are proportional to a weight function, which is linear but decreasing in the proportion of existing colours. We refer to it as the de-preferential urn scheme. We establish the almost-sure limit of the random configuration for any balanced replacement matrix R. In particular, we show that the limiting configuration is uniform on the set of colours if and only if R is a doubly stochastic matrix. We further establish the almost-sure limit of the vector of colour counts and prove central limit theorems for the random configuration as well as for the colour counts.
We consider the random polytope Kn, defined as the convex hull of n points chosen independently and uniformly at random on the boundary of a smooth convex body in ℝd. We present both lower and upper variance bounds, a strong law of large numbers, and a central limit theorem for the intrinsic volumes of Kn. A normal approximation bound from Stein's method and estimates for surface bodies are among the tools involved.
In this paper, we investigate the distribution of the maximum of partial sums of certain cubic exponential sums, commonly known as ‘Birch sums’. Our main theorem gives upper and lower bounds (of nearly the same order of magnitude) for the distribution of large values of this maximum, that hold in a wide uniform range. This improves a recent result of Kowalski and Sawin. The proofs use a blend of probabilistic methods, harmonic analysis techniques, and deep tools from algebraic geometry. The results can also be generalized to other types of $\ell$-adic trace functions. In particular, the lower bound of our result also holds for partial sums of Kloosterman sums. As an application, we show that there exist $x\in [1,p]$ and $a\in \mathbb{F}_{p}^{\times }$ such that $|\sum _{n\leqslant x}\exp (2\unicode[STIX]{x1D70B}i(n^{3}+an)/p)|\geqslant (2/\unicode[STIX]{x1D70B}+o(1))\sqrt{p}\log \log p$. The uniformity of our results suggests that this bound is optimal, up to the value of the constant.
Let X be the constrained random walk on ℤ+2 having increments (1,0), (-1,1), and (0,-1) with respective probabilities λ, µ1, and µ2 representing the lengths of two tandem queues. We assume that X is stable and µ1≠µ2. Let τn be the first time when the sum of the components of X equals n. Let Y be the constrained random walk on ℤ×ℤ+ having increments (-1,0), (1,1), and (0,-1) with probabilities λ, µ1, and µ2. Let τ be the first time that the components of Y are equal to each other. We prove that Pn-xn(1),xn(2)(τ<∞) approximates pn(xn) with relative error exponentially decaying in n for xn=⌊nx⌋, x ∈ℝ+2, 0<x(1)+x(2)<1, x(1)>0. An affine transformation moving the origin to the point (n,0) and letting n→∞ connect the X and Y processes. We use a linear combination of basis functions constructed from single and conjugate points on a characteristic surface associated with X to derive a simple expression for ℙy(τ<∞) in terms of the utilization rates of the nodes. The proof that the relative error decays exponentially in n uses a sequence of subsolutions of a related Hamilton‒Jacobi‒Bellman equation on a manifold consisting of three copies of ℝ+2 glued to each other along the constraining boundaries. We indicate how the ideas of the paper can be generalized to more general processes and other exit boundaries.
Goldman (2010) proved that the distribution of a stationary determinantal point process (DPP) Φ can be coupled with its reduced Palm version Φ0,! such that there exists a point process η where Φ=Φ0,!∪η in distribution and Φ0,!∩η=∅. The points of η characterize the repulsive nature of a typical point of Φ. In this paper we use the first-moment measure of η to study the repulsive behavior of DPPs in high dimensions. We show that many families of DPPs have the property that the total number of points in η converges in probability to 0 as the space dimension n→∞. We also prove that for some DPPs, there exists an R∗ such that the decay of the first-moment measure of η is slowest in a small annulus around the sphere of radius √nR∗. This R∗ can be interpreted as the asymptotic reach of repulsion of the DPP. Examples of classes of DPP models exhibiting this behavior are presented and an application to high-dimensional Boolean models is given.
We continue the analysis of large deviations for randomly connected neural networks used as models of the brain. The originality of the model relies on the fact that the directed impact of one particle onto another depends on the state of both particles, and they have random Gaussian amplitude with mean and variance scaling as the inverse of the network size. Similarly to the spatially extended case (see Cabana and Touboul (2018)), we show that under sufficient regularity assumptions, the empirical measure satisfies a large deviations principle with a good rate function achieving its minimum at a unique probability measure, implying, in particular, its convergence in both averaged and quenched cases, as well as a propagation of a chaos property (in the averaged case only). The class of model we consider notably includes a stochastic version of the Kuramoto model with random connections.
We use the Stein‒Chen method to obtain compound Poisson approximations for the distribution of the number of subgraphs in a generalised stochastic block model which are isomorphic to some fixed graph. This model generalises the classical stochastic block model to allow for the possibility of multiple edges between vertices. We treat the case that the fixed graph is a simple graph and that it has multiple edges. The former results apply when the fixed graph is a member of the class of strictly balanced graphs and the latter results apply to a suitable generalisation of this class to graphs with multiple edges. We also consider a further generalisation of the model to pseudo-graphs, which may include self-loops as well as multiple edges, and establish a parameter regime in the multiple edge stochastic block model in which Poisson approximations are valid. The results are applied to obtain Poisson and compound Poisson approximations (in different regimes) for subgraph counts in the Poisson stochastic block model and degree corrected stochastic block model of Karrer and Newman (2011).
Under mild nondegeneracy assumptions on branching rates in each generation, we provide a criterion for almost sure extinction of a multi-type branching process with time-dependent branching rates. We also provide a criterion for the total number of particles (conditioned on survival and divided by the expectation of the resulting random variable) to approach an exponential random variable as time goes to ∞.
In a series of two papers, we investigate the large deviations and asymptotic behavior of stochastic models of brain neural networks with random interaction coefficients. In this first paper, we take into account the spatial structure of the brain and consider first the presence of interaction delays that depend on the distance between cells and then the Gaussian random interaction amplitude with a mean and variance that depend on the position of the neurons and scale as the inverse of the network size. We show that the empirical measure satisfies a large deviations principle with a good rate function reaching its minimum at a unique spatially extended probability measure. This result implies an averaged convergence of the empirical measure and a propagation of chaos. The limit is characterized through a complex non-Markovian implicit equation in which the network interaction term is replaced by a nonlocal Gaussian process with a mean and covariance that depend on the statistics of the solution over the whole neural field.
It is well known that assumptions of monotonicity in size-bias couplings may be used to prove simple, yet powerful, Poisson approximation results. Here we show how these assumptions may be relaxed, establishing explicit Poisson approximation bounds (depending on the first two moments only) for random variables which satisfy an approximate version of these monotonicity conditions. These are shown to be effective for models where an underlying random variable of interest is contaminated with noise. We also state explicit Poisson approximation bounds for sums of associated or negatively associated random variables. Applications are given to epidemic models, extremes, and random sampling. Finally, we also show how similar techniques may be used to relax the assumptions needed in a Poincaré inequality and in a normal approximation result.
Motivated by a common mathematical finance topic, we discuss the reciprocal of the exit time from a cone of planar Brownian motion which also corresponds to the exponential functional of Brownian motion in the framework of planar Brownian motion. We prove a conjecture of Vakeroudis and Yor (2012) concerning infinite divisibility properties of this random variable and present a novel simple proof of the result of DeBlassie (1987), (1988) concerning the asymptotic behavior of the distribution of the Bessel clock appearing in the skew-product representation of planar Brownian motion, as t→∞. We use the results of the windings approach in order to obtain results for quantities associated to the pricing of Asian options.
We compute the limit shape for several classes of restricted integer partitions, where the restrictions are placed on the part sizes rather than the multiplicities. Our approach utilizes certain classes of bijections which map limit shapes continuously in the plane. We start with bijections outlined in [43], and extend them to include limit shapes with different scaling functions.