We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In clinical trials with two treatment arms, Efron's biased coin design, Efron (1971), sequentially assigns a patient to the underrepresented arm with probability p > ½. Under this design the proportion of patients in any arm converges to ½, and the convergence rate is n-1, as opposed to n-½ under some other popular designs. The generalization of Efron's design to K ≥ 2 arms and an unequal target allocation ratio (q1, . . ., qK) can be found in some papers, most of which determine the allocation probabilities ps in a heuristic way. Nonetheless, it has been noted that by using inappropriate ps, the proportion of patients in the K arms never converges to the target ratio. We develop a general theory to answer the question of what allocation probabilities ensure that the realized proportions under a generalized design still converge to the target ratio (q1, . . ., qK) with rate n-1.
A Poisson line tessellation is observed in the window Wρ := B(0, π-1/2ρ1/2) for ρ > 0. With each cell of the tessellation, we associate the inradius, which is the radius of the largest ball contained in the cell. Using the Poisson approximation, we compute the limit distributions of the largest and smallest order statistics for the inradii of all cells whose nuclei are contained in Wρ as ρ goes to ∞. We additionally prove that the limit shape of the cells minimising the inradius is a triangle.
In this paper we study a special class of size dependent branching processes. We assume that for some positive integer K as long as the population size does not exceed level K, the process evolves as a discrete-time supercritical branching process, and when the population size exceeds level K, it evolves as a subcritical or critical branching process. It is shown that this process does die out in finite time T. The question of when the mean value E(T) is finite or infinite is also addressed.
In their recent paper Velleman and Warrington (2013) analyzed the expected values of some of the parameters in a memory game; namely, the length of the game, the waiting time for the first match, and the number of lucky moves. In this paper we continue this direction of investigation and obtain the limiting distributions of those parameters. More specifically, we prove that when suitably normalized, these quantities converge in distribution to a normal, Rayleigh, and Poisson random variable, respectively. We also make a connection between the memory game and one of the models of preferential attachment graphs. In particular, as a by-product of our methods, we obtain the joint asymptotic normality of the degree counts in the preferential attachment graphs. Furthermore, we obtain simpler proofs (although without rate of convergence) of some of the results of Peköz et al. (2014) on the joint limiting distributions of the degrees of the first few vertices in preferential attachment graphs. In order to prove that the length of the game is asymptotically normal, our main technical tool is a limit result for the joint distribution of the number of balls in a multitype generalized Pólya urn model.
We present an asymptotically optimal importance sampling for Monte Carlo simulation of the Laplace transform of exponential Brownian functionals which plays a prominent role in many disciplines. To this end we utilize the theory of large deviations to reduce finding an asymptotically optimal importance sampling measure to solving a calculus of variations problem. Closed-form solutions are obtained. In addition we also present a path to the test of regularity of optimal drift which is an issue in implementing the proposed method. The performance analysis of the method is provided through the Dothan bond pricing model.
We consider a directed graph on the integers with a directed edge from vertex i to j present with probability n-1, whenever i < j, independently of all other edges. Moreover, to each edge (i, j) we assign weight n-1(j - i). We show that the closure of vertex 0 in such a weighted random graph converges in distribution to the Poisson-weighted infinite tree as n → ∞. In addition, we derive limit theorems for the length of the longest path in the subgraph of the Poisson-weighted infinite tree which has all vertices at weighted distance of at most ρ from the root.
We consider an extension of the Poisson hail model where the service speed is either 0 or ∞ at each point of the Euclidean space. We use and develop tools pertaining to sub-additive ergodic theory in order to establish shape theorems for the growth of the ice-heap under light tail assumptions on the hailstone characteristics. The asymptotic shape depends on the statistics of the hailstones, the intensity of the underlying Poisson point process, and on the geometrical properties of the zero speed set.
In this paper we investigate the functional central limit theorem (CLT) for stochastic processes associated to partial sums of additive functionals of reversible Markov chains with general spate space, under the normalization standard deviation of partial sums. For this case, we show that the functional CLT is equivalent to the fact that the variance of partial sums is regularly varying with exponent 1 and the partial sums satisfy the CLT. It is also equivalent to the conditional CLT.
Random increasing k-trees represent an interesting and useful class of strongly dependent graphs that have been studied widely, including being used recently as models for complex networks. In this paper we study an informative notion called BFS-profile and derive, by several analytic means, asymptotic estimates for its expected value, together with the limiting distribution in certain cases; some interesting consequences predicting more precisely the shapes of random k-trees are also given. Our methods of proof rely essentially on a bijection between k-trees and ordinary trees, the resolution of linear systems, and a specially framed notion called Flajolet–Odlyzko admissibility.
We consider the distribution of the polygonal paths joining partial sums of classical Kloosterman sums $\text{Kl}_{p}(a)$, as $a$ varies over $\mathbf{F}_{p}^{\times }$ and as $p$ tends to infinity. Using independence of Kloosterman sheaves, we prove convergence in the sense of finite distributions to a specific random Fourier series. We also consider Birch sums, for which we can establish convergence in law in the space of continuous functions. We then derive some applications.
Let N and M be positive integers satisfying 1≤ M≤ N, and let 0< p0 < p1 < 1. Define a process {Xn}n=0∞ on ℤ as follows. At each step, the process jumps either one step to the right or one step to the left, according to the following mechanism. For the first N steps, the process behaves like a random walk that jumps to the right with probability p0 and to the left with probability 1-p0. At subsequent steps the jump mechanism is defined as follows: if at least M out of the N most recent jumps were to the right, then the probability of jumping to the right is p1; however, if fewer than M out of the N most recent jumps were to the right then the probability of jumping to the right is p0. We calculate the speed of the process. Then we let N→ ∞ and M/N→ r∈[0,1], and calculate the limiting speed. More generally, we consider the above questions for a random walk with a finite number l of threshold levels, (Mi,pi) i=1l, above the pre-threshold level p0, as well as for one model with l=N such thresholds.
Shot-noise processes are used in applied probability to model a variety of physical systems in, for example, teletraffic theory, insurance and risk theory, and in the engineering sciences. In this paper we prove a large deviation principle for the sample-paths of a general class of multidimensional state-dependent Poisson shot-noise processes. The result covers previously known large deviation results for one-dimensional state-independent shot-noise processes with light tails. We use the weak convergence approach to large deviations, which reduces the proof to establishing the appropriate convergence of certain controlled versions of the original processes together with relevant results on existence and uniqueness.
This paper concerns the asymptotic behavior of a random variable Wλ resulting from the summation of the functionals of a Gibbsian spatial point process over windows Qλ ↑ ℝd. We establish conditions ensuring that Wλ has volume order fluctuations, i.e. they coincide with the fluctuations of functionals of Poisson spatial point processes. We combine this result with Stein's method to deduce rates of a normal approximation for Wλ as λ → ∞. Our general results establish variance asymptotics and central limit theorems for statistics of random geometric and related Euclidean graphs on Gibbsian input. We also establish a similar limit theory for claim sizes of insurance models with Gibbsian input, the number of maximal points of a Gibbsian sample, and the size of spatial birth-growth models with Gibbsian input.
It is well known that the central limit theorem holds for partial sums of a stationary sequence (Xi) of m-dependent random variables with finite variance; however, the limit may be degenerate with variance 0 even if var(Xi) ≠ 0. We show that this happens only in the case when Xi – EXi = Yi – Yi–1 for an (m − 1)-dependent stationary sequence (Yi) with finite variance (a result implicit in earlier results), and give a version for block factors. This yields a simple criterion that is a sufficient condition for the limit not to be degenerate. Two applications to subtree counts in random trees are given.
Fractional Lévy processes generalize fractional Brownian motion in a natural way. We go a step further and extend the usual fractional Riemann-Liouville kernel to a regularly varying function. We call the resulting stochastic processes generalized fractional Lévy processes (GFLPs) and show that they may have short or long memory increments and that their sample paths may have jumps or not. Moreover, we define stochastic integrals with respect to a GFLP and investigate their second-order structure and sample path properties. A specific example is the Ornstein-Uhlenbeck process driven by a time-scaled GFLP. We prove a functional central limit theorem for such scaled processes with a fractional Ornstein-Uhlenbeck process as a limit process. This approximation applies to a wide class of stochastic volatility models, which include models where possibly neither the data nor the latent volatility process are semimartingales.
Let f be an integrable function on an infinite measure space (S, , π). We show that if a regenerative sequence {Xn}n≥0 with canonical measure π could be generated then a consistent estimator of λ ≡ ∫Sf dπ can be produced. We further show that under appropriate second moment conditions, a confidence interval for λ can also be derived. This is illustrated with estimating countable sums and integrals with respect to absolutely continuous measures on ℝd using a simple symmetric random walk on ℤ.
We prove strong convergence and asymptotic normality for the record and the weak record rate of observations of the form Yn = Xn + Tn, n ≥ 1, where (Xn)n ∈ Z is a stationary ergodic sequence of random variables and (Tn)n ≥ 1 is a stochastic trend process with stationary ergodic increments. The strong convergence result follows from the Dubins-Freedman law of large numbers and Birkhoff's ergodic theorem. For the asymptotic normality we rely on the approach of Ballerini and Resnick (1987), coupled with a moment bound for stationary sequences, which is used to deal with the random trend process. Examples of applications are provided. In particular, we obtain strong convergence and asymptotic normality for the number of ladder epochs in a random walk with stationary ergodic increments.
In this paper we establish the central limit theorem for a class of stochastic partial differential equations and as an application derive this theorem for two widely studied population models: super-Brownian motion and the Fleming-Viot process.
We investigate the large deviation properties of the maximum likelihood estimators for the Ornstein-Uhlenbeck process with shift. We propose a new approach to establish large deviation principles which allows us, via a suitable transformation, to circumvent the classical nonsteepness problem. We estimate simultaneously the drift and shift parameters. On the one hand, we prove a large deviation principle for the maximum likelihood estimates of the drift and shift parameters. Surprisingly, we find that the drift estimator shares the same large deviation principle as the estimator previously established for the Ornstein-Uhlenbeck process without shift. Sharp large deviation principles are also provided. On the other hand, we show that the maximum likelihood estimator of the shift parameter satisfies a large deviation principle with a very unusual implicit rate function.