We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we study a weak law of large numbers for the total internal length of the Bolthausen-Sznitman coalescent, thereby obtaining the weak limit law of the centered and rescaled total external length; this extends results obtained in Dhersin and Möhle (2013). An application to population genetics dealing with the total number of mutations in the genealogical tree is also given.
The large deviation principle in the small noise limit is derived for solutions of possibly degenerate Itô stochastic differential equations with predictable coefficients, which may also depend on the large deviation parameter. The result is established under mild assumptions using the Dupuis-Ellis weak convergence approach. Applications to certain systems with memory and to positive diffusions with square-root-like dispersion coefficient are included.
Looking at a large branching population we determine along which path the population that started at 1 at time 0 ended up in B at time N. The result describes the density process, that is, population numbers divided by the initial number K (where K is assumed to be large). The model considered is that of a Galton-Watson process. It is found that in some cases population paths exhibit the strange feature that population numbers go down and then increase. This phenomenon requires further investigation. The technique uses large deviations, and the rate function based on Cramer's theorem is given. It also involves analysis of existence of solutions of a certain algebraic equation.
A projective moving average {Xt, t ∈ ℤ} is a Bernoulli shift written as a backward martingale transform of the innovation sequence. We introduce a new class of nonlinear stochastic equations for projective moving averages, termed projective equations, involving a (nonlinear) kernel Q and a linear combination of projections of Xt on ‘intermediate’ lagged innovation subspaces with given coefficients αi and βi,j. The class of such equations includes usual moving average processes and the Volterra series of the LARCH model. Solvability of projective equations is obtained using a recursive equality for projections of the solution Xt. We show that, under certain conditions on Q, αi, and βi,j, this solution exhibits covariance and distributional long memory, with fractional Brownian motion as the limit of the corresponding partial sums process.
This paper studies a special type of binomial splitting process. Such a process can be used to model a high dimensional corner parking problem as well as determining the depth of random PATRICIA (practical algorithm to retrieve information coded in alphanumeric) tries, which are a special class of digital tree data structures. The latter also has natural interpretations in terms of distinct values in independent and identically distributed geometric random variables and the occupancy problem in urn models. The corresponding distribution is marked by a logarithmic mean and a bounded variance, which is oscillating, if the binomial parameter p is not equal to ½, and asymptotic to one in the unbiased case. Also, the limiting distribution does not exist as a result of the periodic fluctuations.
In this paper we consider a one dimensional stochastic system described by an elliptic equation. A spatially varying random coefficient is introduced to account for uncertainty or imprecise measurements. We model the logarithm of this coefficient by a Gaussian process and provide asymptotic approximations of the tail probabilities of the derivative of the solution.
The main aim of this paper is to prove the quenched central limit theorem for reversible random walks in a stationary random environment on Z without having the integrability condition on the conductance and without using any martingale. The method shown here is particularly simple and was introduced by Depauw and Derrien [3]. More precisely, for a given realization ω of the environment, we consider the Poisson equation (Pω - I)g = f, and then use the pointwise ergodic theorem in [8] to treat the limit of solutions and then the central limit theorem will be established by the convergence of moments. In particular, there is an analogue to a Markov process with discrete space and the diffusion in a stationary random environment.
In this article we show the asymptotics of distribution and moments of the size Xn of the minimal clade of a randomly chosen individual in a Bolthausen-Sznitman n-coalescent for n → ∞. The Bolthausen-Sznitman n-coalescent is a Markov process taking states in the set of partitions of {1, …, n}, where 1, …, n are referred to as individuals. The minimal clade of an individual is the equivalence class the individual is in at the time of the first coalescence event this individual participates in. We also provide exact formulae for the distribution of Xn. The main tool used is the connection of the Bolthausen-Sznitman n-coalescent with random recursive trees introduced by Goldschmidt and Martin (2005). With it, we show that Xn - 1 is distributed as the size of a uniformly chosen table in a standard Chinese restaurant process with n - 1 customers.
We consider a multivariate continuous-time ARMA (MCARMA) process sampled at a high-frequency time grid {hn, 2hn,…, nhn}, where hn ↓ 0 and nhn → ∞ as n → ∞, or at a constant time grid where hn = h. For this model, we present the asymptotic behavior of the properly normalized partial sum to a multivariate stable or a multivariate normal random vector depending on the domain of attraction of the driving Lévy process. Furthermore, we derive the asymptotic behavior of the sample variance. In the case of finite second moments of the driving Lévy process the sample variance is a consistent estimator. Moreover, we embed the MCARMA process in a cointegrated model. For this model, we propose a parameter estimator and derive its asymptotic behavior. The results are given for more general processes than MCARMA processes and contain some asymptotic properties of stochastic integrals.
In this paper we propose a stochastic process, which is a Cox-Ingersoll-Ross process with Hawkes jumps. It can be seen as a generalization of the classical Cox-Ingersoll-Ross process and the classical Hawkes process with exponential exciting function. Our model is a special case of the affine point processes. We obtain Laplace transforms and limit theorems, including the law of large numbers, central limit theorems, and large deviations.
We study the long-time behaviour of a Markov process evolving in N and conditioned not to hit 0. Assuming that the process comes back quickly from ∞, we prove that the process admits a unique quasistationary distribution (in particular, the distribution of the conditioned process admits a limit when time goes to ∞). Moreover, we prove that the distribution of the process converges exponentially fast in the total variation norm to its quasistationary distribution and we provide a bound for the rate of convergence. As a first application of our result, we bring a new insight on the speed of convergence to the quasistationary distribution for birth-and-death processes: we prove that starting from any initial distribution the conditional probability converges in law to a unique distribution ρ supported in N* if and only if the process has a unique quasistationary distribution. Moreover, ρ is this unique quasistationary distribution and the convergence is shown to be exponentially fast in the total variation norm. Also, considering the lack of results on quasistationary distributions for nonirreducible processes on countable spaces, we show, as a second application of our result, the existence and uniqueness of a quasistationary distribution for a class of possibly nonirreducible processes.
Let $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\nu \in M^1([0,\infty [)$ be a fixed probability measure. For each dimension $p\in \mathbb{N}$, let $(X_n^{p})_{n\geq 1}$ be independent and identically distributed $\mathbb{R}^p$-valued random variables with radially symmetric distributions and radial distribution $\nu $. We investigate the distribution of the Euclidean length of $S_n^{p}:=X_1^{p}+\cdots + X_n^{p}$ for large parameters $n$ and $p$. Depending on the growth of the dimension $p=p_n$ we derive by the method of moments two complementary central limit theorems (CLTs) for the functional $\| S_n^{p}\| _2$ with normal limits, namely for $n/p_n \to \infty $ and $n/p_n \to 0$. Moreover, we present a CLT for the case $n/p_n \to c\in \, (0,\infty )$. Thereby we derive explicit formulas and asymptotic results for moments of radial distributed random variables on $\mathbb{R}^p$. All limit theorems are also considered for orthogonal invariant random walks on the space $\mathbb{M}_{p,q}(\mathbb{R})$ of $p\times q$ matrices instead of $\mathbb{R}^p$ for $p\to \infty $ and some fixed dimension $q$.
In this paper we use a simple transient Markov process with an absorbing point to investigate the qualitative behavior of a large-scale storage network of nonreliable file servers across which files can be duplicated. When the size of the system goes to ∞, we show that there is a critical value for the maximum number of files per server such that, below this quantity, most files have a maximum number of copies. Above this value, the network loses a significant number of files until some equilibrium is reached. When the network is stable, we show that, with convenient time scales, the evolution of the network towards the absorbing state can be described via a stochastic averaging principle.
We propose a two-urn model of Pólya type as follows. There are two urns, urn A and urn B. At the beginning, urn A contains rA red and wA white balls and urn B contains rB red and wB white balls. We first draw m balls from urn A and note their colors, say i red and m - i
white balls. The balls are returned to urn A and bi red and b(m - i) white balls are added to urn B. Next, we draw ℓ balls from urn B and note their colors, say j red and ℓ - j white balls. The balls are returned to urn B and aj red and a(ℓ - j) white balls are added to urn A. Repeat the above action n times and let Xn be the fraction of red balls in urn A and Yn the fraction of red balls in urn B. We first show that the expectations of Xn and Yn have the same limit, and then use martingale theory to show that Xn and Yn converge almost surely to the same limit.
This paper deals with Poisson processes on an arbitrary measurable space. Using a direct approach, we derive formulae for moments and cumulants of a vector of multiple Wiener-Itô integrals with respect to the compensated Poisson process. Also, we present a multivariate central limit theorem for a vector whose components admit a finite chaos expansion of the type of a Poisson U-statistic. The approach is based on recent results of Peccati et al. (2010), combining Malliavin calculus and Stein's method; it also yields Berry-Esseen-type bounds. As applications, we discuss moment formulae and central limit theorems for general geometric functionals of intersection processes associated with a stationary Poisson process of k-dimensional flats in .
We study the one-dimensional random motion X = X(t), t ≥ 0, which takes two different velocities with two different alternating intensities. The closed-form formulae for the density functions of X and for the moments of any order, as well as the distributions of the first passage times, are obtained. The limit behaviour of the moments is analysed under nonstandard Kac's scaling.
We analyze the optimal policy for the sequential selection of an alternating subsequence from a sequence of n independent observations from a continuous distribution F, and we prove a central limit theorem for the number of selections made by that policy. The proof exploits the backward recursion of dynamic programming and assembles a detailed understanding of the associated value functions and selection rules.
We study the properties of the multivariate skew normal distribution as an approximation to the distribution of the sum of n independent, identically distributed random vectors. More precisely, we establish conditions ensuring that the uniform distance between the two distribution functions converges to 0 at a rate of n-2/3. The advantage over the corresponding normal approximation is particularly relevant when the summands are skewed and n is small, as illustrated for the special case of exponentially distributed random variables. Applications to some well-known multivariate distributions are also discussed.
We show that the total number of collisions in the exchangeable coalescent process driven by the beta (1, b) measure converges in distribution to a 1-stable law, as the initial number of particles goes to ∞. The stable limit law is also shown for the total branch length of the coalescent tree. These results were known previously for the instance b = 1, which corresponds to the Bolthausen-Sznitman coalescent. The approach we take is based on estimating the quality of a renewal approximation to the coalescent in terms of a suitable Wasserstein distance. Application of the method to beta (a, b)-coalescents with 0 < a < 1 leads to a simplified derivation of the known (2 - a)-stable limit. We furthermore derive asymptotic expansions for the moments of the number of collisions and of the total branch length for the beta (1, b)-coalescent by exploiting the method of sequential approximations.
We consider a two-dimensional reflecting random walk on the nonnegative integer quadrant. This random walk is assumed to be skip free in the direction to the boundary of the quadrant, but may have unbounded jumps in the opposite direction, which are referred to as upward jumps. We are interested in the tail asymptotic behavior of its stationary distribution, provided it exists. Assuming that the upward jump size distributions have light tails, we find the rough tail asymptotics of the marginal stationary distributions in all directions. This generalizes the corresponding results for the skip-free reflecting random walk in Miyazawa (2009). We exemplify these results for a two-node queueing network with exogenous batch arrivals.