To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this short note we show how new fluctuation identities and their associated asymptotics, given in Vigon (2002), Klüppelberg et al. (2004) and Doney and Kyprianou (2006), provide the basis for establishing, in an elementary way, asymptotic overshoot and undershoot distribitions for a general class of Lévy insurance risk processes. The results bring the earlier conclusions of Asmussen and Klüppelberg (1996) for the Cramér-Lundberg process into greater generality.
Classical extreme value theory for stationary sequences of random variables can to a large extent be paraphrased as the study of exceedances over a high threshold. A special role within the description of the temporal dependence between such exceedances is played by the extremal index. Parts of this theory can be generalized not only to random variables on an arbitrary state space hitting certain failure sets, but even to a triangular array of rare events on an abstract probability space. In the case of M4 (maxima of multivariate moving maxima) processes, the arguments take a simple and direct form.
In this article, we study a particular example of general random tessellation, the dead leaves model. This model, first studied by the mathematical morphology school, is defined as a sequential superimposition of random closed sets, and provides the natural tool to study the occlusion phenomenon, an essential ingredient in the formation of visual images. We generalize certain results of G. Matheron and, in particular, compute the probability of n compact sets being included in visible parts. This result characterizes the distribution of the boundary of the dead leaves tessellation.
We consider a stationary moving average process with random coefficients, , generated by an array, {Ct,k, t ∈ Z, k ≥ 0}, of random variables and a heavy-tailed sequence, {Zt, t ∈ Z}. We analyze the limit behavior using a point process analysis. As applications of our results we compare the limiting behavior of the moving average process with random coefficients with that of a standard MA(∞) process.
We discuss two Monte Carlo algorithms for finding the global maximum of a simple random walk with negative drift. This problem can be used to connect the analysis of random input Monte Carlo algorithms with ideas and principles from mathematical statistics.
Methods using gambling teams and martingales are developed and applied to find formulae for the expected value and the generating function of the waiting time to observation of an element of a finite collection of patterns in a sequence generated by a two-state Markov chain of first, or higher, order.
Let {X(s, t), s = (s1, s2) ∈ ℝ2, t ∈ ℝ} be a stationary random field defined over a discrete lattice. In this paper, we consider a set of domain of attraction criteria giving the notion of extremal index for random fields. Together with the extremal-types theorem given by Leadbetter and Rootzen (1997), this will give a characterization of the limiting distribution of the maximum of such random fields.
We consider an insurance portfolio situation in which there is possible dependence between the waiting time for a claim and its actual size. By employing the underlying random walk structure we obtain explicit exponential estimates for infinite- and finite-time ruin probabilities in the case of light-tailed claim sizes. The results are illustrated in several examples, worked out for specific dependence structures.
We study the tail behavior of regularly varying infinitely divisible random vectors and additive processes, i.e. stochastic processes with independent but not necessarily stationary increments. We show that the distribution of an infinitely divisible random vector is tail equivalent to its Lévy measure and we study the asymptotic decay of the probability for an additive process to hit sets far away from the origin. The results are extensions of known univariate results to the multivariate setting; we exemplify some of the difficulties that arise in the multivariate case.
We consider the class of real-valued stochastic processes indexed on a compact subset of R or R2 with almost surely absolutely continuous sample paths. We obtain an implicit formula for the distributions of their maxima. The main result is the derivation of numerical bounds that turn out to be very accurate, in the Gaussian case, for levels that are not large. We also present the first explicit upper bound for the distribution tail of the maximum in the two-dimensional Gaussian framework. Numerical comparisons are performed with known tools such as the Rice upper bound and expansions based on the Euler characteristic. We deal numerically with the determination of the persistence exponent.
We consider the optimal stopping problem for g(Zn), where Zn, n = 1, 2, …, is a homogeneous Markov sequence. An algorithm, called forward improvement iteration, is presented by which an optimal stopping time can be computed. Using an iterative step, this algorithm computes a sequence B0 ⊇ B1 ⊇ B2 ⊇ · · · of subsets of the state space such that the first entrance time into the intersection F of these sets is an optimal stopping time. Various applications are given.
In this paper, we present an iterative procedure to calculate explicitly the Laplace transform of the distribution of the maximum for a Lévy process with positive jumps of phase type. We derive error estimates showing that this iteration converges geometrically fast. Subsequently, we determine the Laplace transform of the law of the upcrossing ladder process and give an explicit pathwise construction of this process.
A full-information version of the secretary problem in which the objective is to maximize the time of possession of a relatively best object is considered both in the case in which only the most recently observed object may be chosen and in the case in which any of the previously observed objects may be chosen. The main purpose of this paper is to obtain, under an optimal rule, both the asymptotic proportional durations when the number of objects tends to infinity, and the expected durations when the number of objects remains finite. The integral expressions for these asymptotic values are derived in both cases: the approximate numerical values are 0.435 in the former (no-recall) case and 0.449 in the latter (recall) case, indicating a surprisingly small difference. The expected values of the optimal stopping times are also obtained from the planar Poisson process analysis.
For n independent, identically distributed uniform points in [0, 1]d, d ≥ 2, let Ln be the total distance from the origin to all the minimal points under the coordinatewise partial order (this is also the total length of the rooted edges of a minimal directed spanning tree on the given random points). For d ≥ 3, we establish the asymptotics of the mean and the variance of Ln, and show that Ln satisfies a central limit theorem, unlike in the case d = 2.
We describe a class of self-similar random measure that generalizes the class of stable, completely random measure, or, in one dimension, the class of processes with stable independent increments. As with the stable processes, the realizations are purely atomic, but the masses of the atoms are not necessarily independent, but rather characterized by self-similar dependence relations. Indeed, the class can be described most effectively in terms of the point process on the product space for the locations and sizes (‘marksȉ) of the atoms. Then self-similarity reduces to an invariance relation (‘biscale invariance’) on the distribution of this marked point process. The condition can be satisfied when the marked point process is compound Poisson, corresponding to the nonnegative stable processes, but is by no means restricted to this case. An example is given which modifies and extends Ogata's epidemic-type aftershock sequence model for earthquake occurrence.
In this paper, we study the extremal behavior of stationary mixed moving average processes of the formY(t)=∫ℝ+×ℝf(r,t-s) dΛ(r,s), t∈ℝ, where f is a deterministic function and Λ is an infinitely divisible, independently scattered random measure whose underlying driving Lévy process is regularly varying. We give sufficient conditions for the stationarity of Y and compute the tail behavior of certain functionals of Y. The extremal behavior is modeled by marked point processes on a discrete-time skeleton chosen properly by the jump times of the underlying driving Lévy process and the extremes of the kernel function. The sequences of marked point processes converge weakly to a cluster Poisson random measure and reflect extremes of Y at a high level. We also show convergence of the partial maxima to the Fréchet distribution. Our models and results cover short- and long-range dependence regimes.
We formulate a localization property of wavelet coefficients for processes with stationary increments, in the estimation problem associated with the processes. A general setting for the estimation is adopted and examples that fit this setting are given. An evaluation of wavelet coefficient decay with respect to shift k∈ℕ is explicitly derived (only the asymptotic behavior, for large k, was previously known). It is this evaluation that makes it possible to establish the localization property of the wavelet coefficients. In doing so, it turns out that the theory of positive-definite functions plays an important role. As applications, we show that, in the wavelet coefficient domain, estimators that use a simple moment method are nearly as good as maximum likelihood estimators. Moreover, even though the underlying process is long-range dependent and process domain estimates imply the validity of a noncentral limit theorem, for the wavelet coefficient domain estimates we always obtain a central limit theorem with a small prescribed error.
Particle filters are Monte Carlo methods that aim to approximate the optimal filter of a partially observed Markov chain. In this paper, we study the case in which the transition kernel of the Markov chain depends on unknown parameters: we construct a particle filter for the simultaneous estimation of the parameter and the partially observed Markov chain (adaptive estimation) and we prove the convergence of this filter to the correct optimal filter, as time and the number of particles go to infinity. The filter presented here generalizes Del Moral's Monte Carlo particle filter.
We consider risk processes that locally behave like Brownian motion with some drift and variance, these both depending on an underlying Markov chain that is also used to generate the claims arrival process. Thus, claims arrive according to a renewal process with waiting times of phase type. Positive claims (downward jumps) are always possible but negative claims (upward jumps) are also allowed. The claims are assumed to form an independent, identically distributed sequence, independent of everything else. As main results, the joint Laplace transform of the time to ruin and the undershoot at ruin, as well as the probability of ruin, are explicitly determined under the assumption that the Laplace transform of the positive claims is a rational function. Both the joint Laplace transform and the ruin probability are decomposed according to the type of ruin: ruin by jump or ruin by continuity. The methods used involve finding certain martingales by first finding partial eigenfunctions for the generator of the Markov process composed of the risk process and the underlying Markov chain. We also use certain results from complex function theory as important tools.
We define an inverse subordinator as the passage times of a subordinator to increasing levels. It has previously been noted that such processes have many similarities to renewal processes. Here we present an expression for the joint moments of the increments of an inverse subordinator. This is an analogue of a result for renewal processes. The main tool is a theorem on processes which are both renewal processes and Cox processes.