We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider the Cauchy problem of the non-linear Schrödinger equation with the modulated dispersion and power type non-linearities in any spatial dimensions. We adapt the Young integral theory developed by Chouk–Gubinelli [7] and multilinear estimates which are based on divisor counting and show the local well-posedness. This generalizes the result by Chouk–Gubinelli [7] in terms of the dimension and the order of the non-linearity.
where $b\,:\, \mathbb{R}^d \rightarrow \mathbb{R}^d$ is a Lipschitz-continuous function, $A \in \mathbb{R}^{d \times d}$ is a positive-definite matrix, $(Z_t)_{t\geqslant 0}$ is a d-dimensional rotationally symmetric $\alpha$-stable Lévy process with $\alpha \in (1,2)$ and $x\in\mathbb{R}^{d}$. We use two Euler–Maruyama schemes with decreasing step sizes $\Gamma = (\gamma_n)_{n\in \mathbb{N}}$ to approximate the invariant measure of $(X_t)_{t \geqslant 0}$: one uses independent and identically distributed $\alpha$-stable random variables as innovations, and the other employs independent and identically distributed Pareto random variables. We study the convergence rates of these two approximation schemes in the Wasserstein-1 distance. For the first scheme, under the assumption that the function b is Lipschitz and satisfies a certain dissipation condition, we demonstrate a convergence rate of $\gamma^{\frac{1}{\alpha}}_n$. This convergence rate can be improved to $\gamma^{1+\frac {1}{\alpha}-\frac{1}{\kappa}}_n$ for any $\kappa \in [1,\alpha)$, provided b has the additional regularity of bounded second-order directional derivatives. For the second scheme, where the function b is assumed to be twice continuously differentiable, we establish a convergence rate of $\gamma^{\frac{2-\alpha}{\alpha}}_n$; moreover, we show that this rate is optimal for the one-dimensional stable Ornstein–Uhlenbeck process. Our theorems indicate that the recent significant result of [34] concerning the unadjusted Langevin algorithm with additive innovations can be extended to stochastic differential equations driven by an $\alpha$-stable Lévy process and that the corresponding convergence rate exhibits similar behaviour. Compared with the result in [6], our assumptions have relaxed the second-order differentiability condition, requiring only a Lipschitz condition for the first scheme, which broadens the applicability of our approach.
We study an optimal inventory control problem under a reflected jump–diffusion netflow process with state-dependent jumps, in which the intensity of the jump process can depend on the inventory level. We examine the well-posedness of the associated integro-differential Hamilton–Jacobi–Bellman (ID-HJB) equation with Neumann boundary condition in the classical sense. To achieve this, we first establish the existence of viscosity solutions to the ID-HJB equation of an auxiliary control problem with a compact policy space, which is proved to be equivalent to the primal problem. We reformulate the ID-HJB equation as a Neumann HJB equation with the (non-local) integral term expressed in terms of the value function of the auxiliary problem and prove the existence of a unique classical solution to the Neumann HJB equation. Then, the well-posedness of the primal ID-HJB equation follows from the unique classical solution of the Neumann HJB equation and the existence of viscosity solutions to the auxiliary ID-HJB equation. Based on this classical solution, we characterize the optimal (admissible) inventory control strategy and show the verification result for the primal control problem.
We are concerned with the micro-macro Parareal algorithm for the simulation of initial-value problems. In this algorithm, a coarse (fast) solver is applied sequentially over the time domain and a fine (time-consuming) solver is applied as a corrector in parallel over smaller chunks of the time interval. Moreover, the coarse solver acts on a reduced state variable, which is coupled with the fine state variable through appropriate coupling operators. We first provide a contribution to the convergence analysis of the micro-macro Parareal method for multiscale linear ordinary differential equations. Then, we extend a variant of the micro-macro Parareal algorithm for scalar stochastic differential equations (SDEs) to higher-dimensional SDEs.
This paper deals with the exponential separation of type II, an important concept for random systems of differential equations with delay, introduced in Mierczyński et al. [18]. Two different approaches to its existence are presented. The state space X will be a separable ordered Banach space with $\dim X\geq 2$, dual space $X^{*}$, and positive cone $X^+$ normal and reproducing. In both cases, appropriate cooperativity and irreducibility conditions are assumed to provide a family of generalized Floquet subspaces. If in addition $X^*$ is also separable, one obtains an exponential separation of type II. When this is not the case, but there is an Oseledets decomposition for the continuous semiflow, the same result holds. Detailed examples are given for all the situations, including also a case where the cone is not normal.
We consider time-inhomogeneous ordinary differential equations (ODEs) whose parameters are governed by an underlying ergodic Markov process. When this underlying process is accelerated by a factor $\varepsilon^{-1}$, an averaging phenomenon occurs and the solution of the ODE converges to a deterministic ODE as $\varepsilon$ vanishes. We are interested in cases where this averaged flow is globally attracted to a point. In that case, the equilibrium distribution of the solution of the ODE converges to a Dirac mass at this point. We prove an asymptotic expansion in terms of $\varepsilon$ for this convergence, with a somewhat explicit formula for the first-order term. The results are applied in three contexts: linear Markov-modulated ODEs, randomized splitting schemes, and Lotka–Volterra models in a random environment. In particular, as a corollary, we prove the existence of two matrices whose convex combinations are all stable but are such that, for a suitable jump rate, the top Lyapunov exponent of a Markov-modulated linear ODE switching between these two matrices is positive.
This paper analyzes single-item continuous-review inventory models with random supplies in which the inventory dynamic between orders is described by a diffusion process, and a long-term average cost criterion is used to evaluate decisions. The models in this class have general drift and diffusion coefficients and boundary points that are consistent with the notion that demand should tend to reduce the inventory level. Random yield is described by a (probability) transition function which depends on the inventory on hand and the nominal amount ordered; it is assumed to be a distribution with support in the interval determined by the order-from and the nominal order-to locations of the stock level. Using weak convergence arguments involving average expected occupation and ordering measures, conditions are given for the optimality of an (s, S) ordering policy in the general class of policies with finite expected cost. The characterization of the cost of an (s, S) policy as a function of two variables naturally leads to a nonlinear optimization problem over the stock levels s and S, and the existence of an optimizing pair $(s^*,S^*)$ is established under weak conditions. Thus, optimal policies of inventory models with random supplies can (easily) be numerically computed. The range of applicability of the optimality result is illustrated on several inventory models with random yields.
We study the many-body localization (MBL) properties of the Heisenberg XXZ spin-$\frac 12$ chain in a random magnetic field. We prove that the system exhibits localization in any given energy interval at the bottom of the spectrum in a nontrivial region of the parameter space. This region, which includes weak interaction and strong disorder regimes, is independent of the size of the system and depends only on the energy interval. Our approach is based on the reformulation of the localization problem as an expression of quasi-locality for functions of the random many-body XXZ Hamiltonian. This allows us to extend the fractional moment method for proving localization, previously derived in a single-particle localization context, to the many-body setting.
We provide explicit small-time formulae for the at-the-money implied volatility, skew, and curvature in a large class of models, including rough volatility models and their multi-factor versions. Our general setup encompasses both European options on a stock and VIX options, thereby providing new insights on their joint calibration. The tools used are essentially based on Malliavin calculus for Gaussian processes. We develop a detailed theoretical and numerical analysis of the two-factor rough Bergomi model and provide insights on the interplay between the different parameters for joint SPX–VIX smile calibration.
In this article, we give explicit bounds on the Wasserstein and Kolmogorov distances between random variables lying in the first chaos of the Poisson space and the standard normal distribution, using the results of Last et al. (Prob. Theory Relat. Fields165, 2016). Relying on the theory developed by Saulis and Statulevicius in Limit Theorems for Large Deviations (Kluwer, 1991) and on a fine control of the cumulants of the first chaoses, we also derive moderate deviation principles, Bernstein-type concentration inequalities, and normal approximation bounds with Cramér correction terms for the same variables. The aforementioned results are then applied to Poisson shot noise processes and, in particular, to the generalized compound Hawkes point processes (a class of stochastic models, introduced in this paper, which generalizes classical Hawkes processes). This extends the recent results of Hillairet et al. (ALEA19, 2022) and Khabou et al. (J. Theoret. Prob.37, 2024) regarding the normal approximation and those of Zhu (Statist. Prob. Lett.83, 2013) for moderate deviations.
We study global-in-time dynamics of the stochastic nonlinear beam equations (SNLB) with an additive space-time white noise, posed on the four-dimensional torus. The roughness of the noise leads us to introducing a time-dependent renormalization, after which we show that SNLB is pathwise locally well-posed in all subcritical and most of the critical regimes. For the (renormalized) defocusing cubic SNLB, we establish pathwise global well-posedness below the energy space, by adapting a hybrid argument of Gubinelli-Koch-Oh-Tolomeo (2022) that combines the I-method with a Gronwall-type argument. Lastly, we show almost sure global well-posedness and invariance of the Gibbs measure for the stochastic damped nonlinear beam equations in the defocusing case.
The aim of this article is to study the asymptotic behaviour of non-autonomous stochastic lattice systems. We first show the existence and uniqueness of a pullback measure attractor. Moreover, when deterministic external forcing terms are periodic in time, we show the pullback measure attractors are periodic. We then study the upper semicontinuity of pullback measure attractors as the noise intensity goes to zero. Pullback asymptotic compact for a family of probability measures with respect to probability distributions of the solutions is demonstrated by using uniform a priori estimates for far-field values of solutions.
In this work, we study early warning signs for stochastic partial differential equations (SPDEs), where the linearisation around a steady state is characterised by continuous spectrum. The studied warning sign takes the form of qualitative changes in the variance as a deterministic bifurcation threshold is approached via parameter variation. Specifically, we focus on the scaling law of the variance near the transition. Since we are dealing here, in contrast to previous studies, with the case of continuous spectrum and quantitative scaling laws, it is natural to start with linearisations of the drift operator that are multiplication operators defined by analytic functions. For a one-dimensional spatial domain, we obtain precise rates of divergence. In the case of the two- and three-dimensional domains, an upper bound to the rate of the early warning sign is proven. These results are cross-validated by numerical simulations. Our theory can be generically useful for several applications, where stochastic and spatial aspects are important in combination with continuous spectrum bifurcations.
Continuous-time Markov chains are frequently used to model the stochastic dynamics of (bio)chemical reaction networks. However, except in very special cases, they cannot be analyzed exactly. Additionally, simulation can be computationally intensive. An approach to address these challenges is to consider a more tractable diffusion approximation. Leite and Williams (Ann. Appl. Prob.29, 2019) proposed a reflected diffusion as an approximation for (bio)chemical reaction networks, which they called the constrained Langevin approximation (CLA) as it extends the usual Langevin approximation beyond the first time some chemical species becomes zero in number. Further explanation and examples of the CLA can be found in Anderson et al. (SIAM Multiscale Modeling Simul.17, 2019).
In this paper, we extend the approximation of Leite and Williams to (nearly) density-dependent Markov chains, as a first step to obtaining error estimates for the CLA when the diffusion state space is one-dimensional, and we provide a bound for the error in a strong approximation. We discuss some applications for chemical reaction networks and epidemic models, and illustrate these with examples. Our method of proof is designed to generalize to higher dimensions, provided there is a Lipschitz Skorokhod map defining the reflected diffusion process. The existence of such a Lipschitz map is an open problem in dimensions more than one.
We consider the stochastic volatility model obtained by adding a compound Hawkes process to the volatility of the well-known Heston model. A Hawkes process is a self-exciting counting process with many applications in mathematical finance, insurance, epidemiology, seismology, and other fields. We prove a general result on the existence of a family of equivalent (local) martingale measures. We apply this result to a particular example where the sizes of the jumps are exponentially distributed. Finally, a practical application to efficient computation of exposures is discussed.
Qu, Dassios, and Zhao (2021) suggested an exact simulation method for tempered stable Ornstein–Uhlenbeck processes, but their algorithms contain some errors. This short note aims to correct their algorithms and conduct some numerical experiments.
We give an extension of Lê’s stochastic sewing lemma. The stochastic sewing lemma proves convergence in $L_m$ of Riemann type sums $\sum _{[s,t] \in \pi } A_{s,t}$ for an adapted two-parameter stochastic process A, under certain conditions on the moments of $A_{s,t}$ and of conditional expectations of $A_{s,t}$ given $\mathcal F_s$. Our extension replaces the conditional expectation given $\mathcal F_s$ by that given $\mathcal F_v$ for $v<s$, and it allows to make use of asymptotic decorrelation properties between $A_{s,t}$ and $\mathcal F_v$ by including a singularity in $(s-v)$. We provide three applications for which Lê’s stochastic sewing lemma seems to be insufficient. The first is to prove the convergence of Itô or Stratonovich approximations of stochastic integrals along fractional Brownian motions under low regularity assumptions. The second is to obtain new representations of local times of fractional Brownian motions via discretization. The third is to improve a regularity assumption on the diffusion coefficient of a stochastic differential equation driven by a fractional Brownian motion for pathwise uniqueness and strong existence.
We study Gibbs measures with log-correlated base Gaussian fields on the d-dimensional torus. In the defocusing case, the construction of such Gibbs measures follows from Nelson’s argument. In this paper, we consider the focusing case with a quartic interaction. Using the variational formulation, we prove nonnormalizability of the Gibbs measure. When $d = 2$, our argument provides an alternative proof of the nonnormalizability result for the focusing $\Phi ^4_2$-measure by Brydges and Slade (1996). Furthermore, we provide a precise rate of divergence, where the constant is characterized by the optimal constant for a certain Bernstein’s inequality on $\mathbb R^d$. We also go over the construction of the focusing Gibbs measure with a cubic interaction. In the appendices, we present (a) nonnormalizability of the Gibbs measure for the two-dimensional Zakharov system and (b) the construction of focusing quartic Gibbs measures with smoother base Gaussian measures, showing a critical nature of the log-correlated Gibbs measure with a focusing quartic interaction.
We consider the super-replication problem for a class of exotic options known as life-contingent options within the framework of the Black–Scholes market model. The option is allowed to be exercised if the death of the option holder occurs before the expiry date, otherwise there is a compensation payoff at the expiry date. We show that there exists a minimal super-replication portfolio and determine the associated initial investment. We then give a characterisation of when replication of the option is possible. Finally, we give an example of an explicit super-replicating hedge for a simple life-contingent option.
We study a skew Ornstein–Uhlenbeck process with zero being a sticky reflecting boundary, which is defined as the weak solution to a stochastic differential equation (SDE) system involving local time. The main results obtained include: (i) the existence and uniqueness of solutions to the SDE system, (ii) the scale function and speed measure, and (iii) the distributional properties regarding the transition density and the first hitting times. On the application side, we apply the process to interest rate modeling and obtain the explicit pricing formula for zero-coupon bonds. Numerical examples illustrate the impacts on bond yields of skewness and stickiness parameters.