We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The gambler’s ruin problem for correlated random walks (CRWs), both with and without delays, is addressed using the optional stopping theorem for martingales. We derive closed-form expressions for the ruin probabilities and the expected game duration for CRWs with increments $\{1,-1\}$ and for symmetric CRWs with increments $\{1,0,-1\}$ (CRWs with delays). Additionally, a martingale technique is developed for general CRWs with delays. The gambler’s ruin probability for a game involving bets on two arbitrary patterns is also examined.
We give a notion of boundary pair $(\mathcal{B}_-,\mathcal{B}_+)$ for measured groupoids which generalizes the one introduced by Bader and Furman [BF14] for locally compact groups. In the case of a semidirect groupoid $\mathcal{G}=\Gamma \ltimes X$ obtained by a probability measure preserving action $\Gamma \curvearrowright X$ of a locally compact group, we show that a boundary pair is exactly $(B_- \times X, B_+ \times X)$, where $(B_-,B_+)$ is a boundary pair for $\Gamma$. For any measured groupoid $(\mathcal{G},\nu )$, we prove that the Poisson boundaries associated to the Markov operators generated by a probability measure equivalent to $\nu$ provide other examples of our definition. Following Bader and Furman [BF], we define algebraic representability for an ergodic groupoid $(\mathcal{G},\nu )$. In this way, given any measurable representation $\rho \,:\,\mathcal{G} \rightarrow H$ into the $\kappa$-points of an algebraic $\kappa$-group $\mathbf{H}$, we obtain $\rho$-equivariant maps $\mathcal{B}_\pm \rightarrow H/L_\pm$, where $L_\pm =\mathbf{L}_\pm (\kappa )$ for some $\kappa$-subgroups $\mathbf{L}_\pm \lt \mathbf{H}$. In the particular case when $\kappa =\mathbb{R}$ and $\rho$ is Zariski dense, we show that $L_\pm$ must be minimal parabolic subgroups.
We consider a stochastic model, called the replicator coalescent, describing a system of blocks of k different types that undergo pairwise mergers at rates depending on the block types: with rate $C_{ij}\geq 0$ blocks of type i and j merge, resulting in a single block of type i. The replicator coalescent can be seen as a generalisation of Kingman’s coalescent death chain in a multi-type setting, although without an underpinning exchangeable partition structure. The name is derived from a remarkable connection between the instantaneous dynamics of this multi-type coalescent when issued from an arbitrarily large number of blocks, and the so-called replicator equations from evolutionary game theory. By dilating time arbitrarily close to zero, we see that initially, on coming down from infinity, the replicator coalescent behaves like the solution to a certain replicator equation. Thereafter, stochastic effects are felt and the process evolves more in the spirit of a multi-type death chain.
We prove an ergodic theorem for Markov chains indexed by the Ulam–Harris–Neveu tree over large subsets with arbitrary shape under two assumptions: (i) with high probability, two vertices in the large subset are far from each other, and (ii) with high probability, those two vertices have their common ancestor close to the root. The assumption on the common ancestor can be replaced by some regularity assumption on the Markov transition kernel. We verify that these assumptions are satisfied for some usual trees. Finally, with Markov chain Monte Carlo considerations in mind, we prove that when the underlying Markov chain is stationary and reversible, the Markov chain, that is the line graph, yields minimal variance for the empirical average estimator among trees with a given number of nodes. In doing so, we prove that the Hosoya–Wiener polynomial is minimized over $[{-}1,1]$ by the line graph among trees of a given size.
We analyse a Markovian SIR epidemic model where individuals either recover naturally or are diagnosed, leading to isolation and potential contact tracing. Our focus is on digital contact tracing via a tracing app, considering both its standalone use and its combination with manual tracing. We prove that as the population size n grows large, the epidemic process converges to a limiting process, which, unlike with typical epidemic models, is not a branching process due to dependencies created by contact tracing. However, by grouping to-be-traced individuals into macro-individuals, we derive a multi-type branching process interpretation, allowing computation of the reproduction number R. This is then converted to an individual reproduction number $R^\mathrm{(ind)}$, which, in contrast to R, decays monotonically with the fraction of app-users, while both share the same threshold at 1. Finally, we compare digital (only) contact tracing and manual (only) contact tracing, proving that the critical fraction of app-users, $\pi_{\mathrm{c}}$, required for $R=1$ is higher than the critical fraction manually contact-traced, $p_{\mathrm{c}}$, for manual tracing.
We study a variant of the classical Markovian logistic SIS epidemic model on a complete graph, which has the additional feature that healthy individuals can become infected without contacting an infected member of the population. This additional ‘self-infection’ is used to model situations where there is an unknown source of infection or an external disease reservoir, such as an animal carrier population. In contrast to the classical logistic SIS epidemic model, the version with self-infection has a non-degenerate stationary distribution, and we derive precise asymptotics for the time to converge to stationarity (mixing time) as the population size becomes large. It turns out that the chain exhibits the cutoff phenomenon, which is a sharp transition in time from one to zero of the total variation distance to stationarity. We obtain the exact leading constant for the cutoff time and show that the window size is of constant (optimal) order. While this result is interesting in its own right, an additional contribution of this work is that the proof illustrates a recently formalised methodology of Barbour, Brightwell and Luczak (2022), ‘Long-term concentration of measure and cut-off’, Stochastic Processes and their Applications152, 378–423, which can be used to show cutoff via a combination of concentration-of-measure inequalities for the trajectory of the chain and coupling techniques.
For a spectrally negative Lévy process X, consider $g_t$ and its infinitesimal generator. Moreover, with $t\geq 0$, the last time X is below the level zero before time $\{(g_t,t, X_t), t\geq 0 \}$ the length of a current positive excursion, we derive a general formula that allows us to calculate a functional of the whole path of $U_t\,:\!=\,t-g_t$. We use a perturbation method for Lévy processes to derive an Itô formula for the three-dimensional process $ (U, X)=\{(U_t, X_t),t\geq 0\}$ in terms of the positive and negative excursions of the process X. As a corollary, we find the joint Laplace transform of $(U_{\mathbf{e}_q}, X_{\mathbf{e}_q})$, where $\mathbf{e}_q$ is an independent exponential time, and the q-potential measure of the process (U, X). Furthermore, using the results mentioned above, we find a solution to a general optimal stopping problem depending on (U, X) with an application in corporate bankruptcy. Lastly, we establish a link between the optimal prediction of $g_{\infty}$ and optimal stopping problems in terms of (U, X) as per Baurdoux, E. J. and Pedraza, J. M., $L_p$ optimal prediction of the last zero of a spectrally negative Lévy process, Annals of Applied Probability, 34 (2024), 1350–1402.
We consider a single server queue that has a threshold to change its arrival process and service speed by its queue length, which is referred to as a two-level GI/G/1 queue. This model is motivated by an energy saving problem for a single server queue whose arrival process and service speed are controlled. To obtain its performance in tractable form, we study the limit of the stationary distribution of the queue length in this two-level queue under scaling in heavy traffic. Except for a special case, this limit corresponds to its diffusion approximation. It is shown that this limiting distribution is truncated exponential (or uniform if the drift is null) below the threshold level and exponential above it under suitably chosen system parameters and generally distributed interarrival times and workloads brought by customers. This result is proved under a mild limitation on arrival parameters using the so-called basic adjoint relationship (BAR) approach studied in Braverman, Dai, and Miyazawa (2017, 2024) and Miyazawa (2017, 2024). We also intuitively discuss about a diffusion process corresponding to the limit of the stationary distribution under scaling.
In this paper, we study asymptotic behaviors of a subcritical branching Brownian motion with drift $-\rho$, killed upon exiting $(0, \infty)$, and offspring distribution $\{p_k{:}\; k\ge 0\}$. Let $\widetilde{\zeta}^{-\rho}$ be the extinction time of this subcritical branching killed Brownian motion, $\widetilde{M}_t^{-\rho}$ the maximal position of all the particles alive at time t and $\widetilde{M}^{-\rho}:\!=\max_{t\ge 0}\widetilde{M}_t^{-\rho}$ the all-time maximal position. Let $\mathbb{P}_x$ be the law of this subcritical branching killed Brownian motion when the initial particle is located at $x\in (0,\infty)$. Under the assumption $\sum_{k=1}^\infty k ({\log}\; k) p_k <\infty$, we establish the decay rates of $\mathbb{P}_x(\widetilde{\zeta}^{-\rho}>t)$ and $\mathbb{P}_x(\widetilde{M}^{-\rho}>y)$ as t and y respectively tend to $\infty$. We also establish the decay rate of $\mathbb{P}_x(\widetilde{M}_t^{-\rho}> z(t,\rho))$ as $t\to\infty$, where $z(t,\rho)=\sqrt{t}z-\rho t$ for $\rho\leq 0$ and $z(t,\rho)=z$ for $\rho>0$. As a consequence, we obtain a Yaglom-type limit theorem.
In their celebrated paper [CLR10], Caputo, Liggett and Richthammer proved Aldous’ conjecture and showed that for an arbitrary finite graph, the spectral gap of the interchange process is equal to the spectral gap of the underlying random walk. A crucial ingredient in the proof was the Octopus Inequality — a certain inequality of operators in the group ring $\mathbb{R}\left[{\mathrm{Sym}}_{n}\right]$ of the symmetric group. Here we generalise the Octopus Inequality and apply it to generalising the Caputo–Liggett–Richthammer Theorem to certain hypergraphs, proving some cases of a conjecture of Caputo.
The payoff in the Chow–Robbins coin-tossing game is the proportion of heads when you stop. Stopping to maximize expectation was addressed by Chow and Robbins (1965), who proved there exist integers ${k_n}$ such that it is optimal to stop at n tosses when heads minus tails is ${k_n}$. Finding ${k_n}$ was unsolved except for finitely many cases by computer. We prove an $o(n^{-1/4})$ estimate of the stopping boundary of Dvoretsky (1967), which then proves ${k_n} = \left\lceil {\alpha \sqrt n \,\, - 1/2\,\, + \,\,\frac{{\left( { - 2\zeta (\! -1/2)} \right)\sqrt \alpha }}{{\sqrt \pi }}{n^{ - 1/4}}} \right\rceil $ except for n in a set of density asymptotic to 0, at a power law rate. Here, $\alpha$ is the Shepp–Walker constant from the Brownian motion analog, and $\zeta$ is Riemann’s zeta function. An $n^{ - 1/4}$ dependence was conjectured by Christensen and Fischer (2022). Our proof uses moments involving Catalan and Shapiro Catalan triangle numbers which appear in a tree resulting from backward induction, and a generalized backward induction principle. It was motivated by an idea of Häggström and Wästlund (2013) to use backward induction of upper and lower Value bounds from a horizon, which they used numerically to settle a few cases. Christensen and Fischer, with much better bounds, settled many more cases. We use Skorohod’s embedding to get simple upper and lower bounds from the Brownian analog; our upper bound is the one found by Christensen and Fischer in another way. We use them first for yet many more examples and a conjecture, then algebraically in the tree, with feedback to get much sharper Value bounds near the border, and analytic results. Also, we give a formula that gives the exact optimal stop rule for all n up to about a third of a billion; it uses the analytic result plus terms arrived at empirically.
We study continuous-time Markov chains on the nonnegative integers under mild regularity conditions (in particular, the set of jump vectors is finite and both forward and backward jumps are possible). Based on the so-called flux balance equation, we derive an iterative formula for calculating stationary measures. Specifically, a stationary measure $\pi(x)$ evaluated at $x\in\mathbb{N}_0$ is represented as a linear combination of a few generating terms, similarly to the characterization of a stationary measure of a birth–death process, where there is only one generating term, $\pi(0)$. The coefficients of the linear combination are recursively determined in terms of the transition rates of the Markov chain. For the class of Markov chains we consider, there is always at least one stationary measure (up to a scaling constant). We give various results pertaining to uniqueness and nonuniqueness of stationary measures, and show that the dimension of the linear space of signed invariant measures is at most the number of generating terms. A minimization problem is constructed in order to compute stationary measures numerically. Moreover, a heuristic linear approximation scheme is suggested for the same purpose by first approximating the generating terms. The correctness of the linear approximation scheme is justified in some special cases. Furthermore, a decomposition of the state space into different types of states (open and closed irreducible classes, and trapping, escaping and neutral states) is presented. Applications to stochastic reaction networks are well illustrated.
We develop general conditions for weak convergence of adaptive Markov chain Monte Carlo processes and this is shown to imply a weak law of large numbers for bounded Lipschitz continuous functions. This allows an estimation theory for adaptive Markov chain Monte Carlo where previously developed theory in total variation may fail or be difficult to establish. Extensions of weak convergence to general Wasserstein distances are established, along with a weak law of large numbers for possibly unbounded Lipschitz functions. Applications are applied to autoregressive processes in various settings, unadjusted Langevin processes, and adaptive Metropolis–Hastings.
We introduce a financial market model featuring a risky asset whose price follows a sticky geometric Brownian motion and a riskless asset that grows with a constant interest rate $r\in \mathbb R$. We prove that this model satisfies no arbitrage and no free lunch with vanishing risk only when $r=0$. Under this condition, we derive the corresponding arbitrage-free pricing equation, assess the replicability, and give a representation of the replication strategy. We then show that all locally bounded replicable payoffs for the standard Black–Scholes model are also replicable for the sticky model. Last, we evaluate via numerical experiments the impact of hedging in discrete time and of misrepresenting price stickiness.
We consider a superprocess $\{X_t\colon t\geq 0\}$ in a random environment described by a Gaussian field $\{W(t,x)\colon t\geq 0,x\in \mathbb{R}^d\}$. First, we set up a representation of $\mathbb{E}[\langle g, X_t\rangle\mathrm{e}^{-\langle \,f,X_t\rangle }\mid\sigma(W)\vee\sigma(X_r,0\leq r\leq s)]$ for $0\leq s < t$ and some functions f,g, which generalizes the result in Mytnik and Xiong (2007, Theorem 2.15). Next, we give a uniform upper bound for the conditional log-Laplace equation with unbounded initial values. We then use this to establish the corresponding conditional entrance law. Finally, the excursion representation of $\{X_t\colon t\geq 0\}$ is given.
This paper is concerned with the growth rate of susceptible–infectious–recovered epidemics with general infectious period distribution on random intersection graphs. This type of graph is characterised by the presence of cliques (fully connected subgraphs). We study epidemics on random intersection graphs with a mixed Poisson degree distribution and show that in the limit of large population sizes the number of infected individuals grows exponentially during the early phase of the epidemic, as is generally the case for epidemics on asymptotically unclustered networks. The Malthusian parameter is shown to satisfy a variant of the classical Euler–Lotka equation. To obtain these results we construct a coupling of the epidemic process and a continuous-time multitype branching process, where the type of an individual is (essentially) given by the length of its infectious period. Asymptotic results are then obtained via an embedded single-type Crump–Mode–Jagers branching process.
Motivated by recent developments of quasi-stationary Monte Carlo methods, we investigate the stability of quasi-stationary distributions of killed Markov processes under perturbations of the generator. We first consider a general bounded self-adjoint perturbation operator, and then study a particular unbounded perturbation corresponding to truncation of the killing rate. In both scenarios, we quantify the difference between eigenfunctions of the smallest eigenvalue of the perturbed and unperturbed generators in a Hilbert space norm. As a consequence, $\mathcal{L}^1$-norm estimates of the difference of the resulting quasi-stationary distributions in terms of the perturbation are provided.
We show that for $\lambda\in[0,{m_1}/({1+\sqrt{1-{1}/{m_1}}})]$, the biased random walk’s speed on a Galton–Watson tree without leaves is strictly decreasing, where $m_1\geq 2$. Our result extends the monotonic interval of the speed on a Galton–Watson tree.
This paper characterizes irreducible phase-type representations for exponential distributions. Bean and Green (2000) gave a set of necessary and sufficient conditions for a phase-type distribution with an irreducible generator matrix to be exponential. We extend these conditions to irreducible representations, and we thus give a characterization of all irreducible phase-type representations for exponential distributions. We consider the results in relation to time-reversal of phase-type distributions, PH-simplicity, and the algebraic degree of a phase-type distribution, and we give applications of the results. In particular we give the conditions under which a Coxian distribution becomes exponential, and we construct bivariate exponential distributions. Finally, we translate the main findings to the discrete case of geometric distributions.
For a continuous-time phase-type (PH) distribution, starting with its Laplace–Stieltjes transform, we obtain a necessary and sufficient condition for its minimal PH representation to have the same order as its algebraic degree. To facilitate finding this minimal representation, we transform this condition equivalently into a non-convex optimization problem, which can be effectively addressed using an alternating minimization algorithm. The algorithm convergence is also proved. Moreover, the method we develop for the continuous-time PH distributions can be used directly for the discrete-time PH distributions after establishing an equivalence between the minimal representation problems for continuous-time and discrete-time PH distributions.