To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Cognitive function may contribute to variability in older adults’ ability to cope with chronic stress; however, limited research has evaluated this relationship. This study investigated the relationship between theoretically derived coping domains and cognitive function in 165 middle-to-older adults during the Omicron stage of COVID-19.
Method:
Participants completed a clinical interview and self-report measures of health. The National Alzheimer’s Coordinating Center Uniform Data Set neuropsychological battery was used to evaluate memory, language, executive function/speed, and working memory. Structural equation modeling evaluated the underlying factor structure of the Brief COPE adapted for COVID-19.
Results:
The data supported the proposed second-order Approach factor comprised of Problem-Solving and Emotion Regulation (ER) strategies and a first-order Avoidance factor. Higher Avoidance was associated with greater depression symptoms, lower income and worse memory, executive function, working memory, and verbal fluency performance. Higher Problem-Solving was associated with better verbal fluency performance. ER strategies were not significantly associated with cognitive function. The use of Problem-Solving was not associated with less Avoidance. Greater use of Problem-Solving, ER, and Avoidance were all associated with higher levels of stress. Post-hoc analyses found that higher Acceptance was the only coping strategy associated with less stress.
Conclusions:
These findings demonstrate that older adults with worse cognitive function were more likely to use Avoidance during the pandemic, which could result in prolonged stress and adverse health consequences. Future research is warranted to investigate whether acceptance-based interventions reduce the avoidance and impact of stress on health in vulnerable older adults.
The previously observed heterogeneity in developmental and intergenerational trajectories of childhood trauma may root from interindividual differences in the way trauma-exposed individuals have resolved these experiences. The current study explored whether distinctive patterns of impaired mentalization in relation to trauma could be identified in a sample of 825 pregnant women who experienced childhood maltreatment and whether these heterogeneous patterns were marked by significant differences in internalized and externalized problems during pregnancy, intimate partner violence, personality dysfunctions, and antenatal attachment. A latent profile analysis applied to the seven subscales of the Failure to Mentalize Trauma Questionnaire unraveled interindividual variability in mentalizing impairments among pregnant women exposed to childhood maltreatment by identifying five distinctive types of psychological responses to trauma, each being associated in cross-sectional analyses with a specific set of symptoms and dysfunctions. Overall, the study highlights the need for tailored interventions based on the individuals’ specific impairments in mentalizing trauma and calls for future developmental research exploring the longitudinal correlates of the five documented profiles of trauma processing.
Cellulose of tree rings is often assumed to be predominantly formed by direct assimilation of CO2 by photosynthesis and consequently can be used to reconstruct past atmospheric 14C concentrations at annual resolution. Yet little is known about the extent and the age of stored carbon from previous years used in addition to the direct assimilation in tree rings. Here, we studied 14C in earlywood and latewood cellulose of four different species (oak, pine, larch and spruce), which are commonly used for radiocarbon calibration and dating. These trees were still growing during the radiocarbon bomb peak period (1958–1972). We compared cellulose 14C measured in tree-ring subdivisions with the atmospheric 14C corresponding to the time of ring formation. We observed that cellulose 14C carried up to about 50% of the atmospheric 14C signal from the previous 1–2 years only in the earlywood of oak, whereas in conifers it was up to 20% in the earlywood and in the case of spruce also in the latewood. The bias in using the full ring of trees growing in a temperate oceanic climate to estimate atmospheric 14C concentration might be minimal considering that earlywood has a low mass contribution and that the variability in atmospheric 14C over a few years is usually less than 3‰.
Mildly explosive autoregressions have been extensively employed in recent theoretical and applied econometric work to model the phenomenon of asset market bubbles. An important issue in this context concerns the construction of confidence intervals for the autoregressive parameter that represents the degree of explosiveness. Existing studies rely on intervals that are justified only under conditional homoskedasticity/heteroskedasticity. This paper studies the problem of constructing asymptotically valid confidence intervals in a mildly explosive autoregression where the innovations are allowed to be unconditionally heteroskedastic. The assumed variance process is general and can accommodate both deterministic and stochastic volatility specifications commonly adopted in the literature. Within this framework, we show that the standard heteroskedasticity- and autocorrelation-consistent estimate of the long-run variance converges in distribution to a nonstandard random variable that depends on nuisance parameters. Notwithstanding this result, the corresponding t-statistic is shown to still possess a standard normal limit distribution. To improve the quality of inference in small samples, we propose a dependent wild bootstrap-t procedure and establish its asymptotic validity under relatively weak conditions. Monte Carlo simulations demonstrate that our recommended approach performs favorably in finite samples relative to existing methods across a wide range of volatility specifications. Applications to international stock price indices and U.S. house prices illustrate the relevance of the advocated method in practice.
The development of active and low-cost transition metal oxide-based catalysts was vital for the catalytic oxidation of toluene. This study aimed to prepare Fe-Mn oxide catalysts by Mn-rich limonite, and investigate the catalytic activity and mechanism for toluene oxidation. The natural Mn-rich limonite was thermally activated at different temperatures and these thermally activated samples exhibited different oxidation activities. YL-300, obtained through thermal treatment at 300°C, exhibited excellent catalytic activity, showing 90% toluene conversion at 239°C (1000 ppm toluene) and remarkable catalytic stability even in the presence of water vapor (5 vol.%). The amount of oxygen vacancies in the catalyst was regulated by tuning the thermal treatment temperatures. Optimal thermal treatment facilitated the increase of oxygen vacancies and enhanced the oxygen mobility and redox capacity of YL-300, contributing to the complete oxidation of toluene to H2O and CO2. The oxidation of toluene was greatly influenced by the adsorbed oxygen species. This study demonstrates the potential of Mn-rich limonite as a promising catalyst for toluene oxidation, thereby promoting the utilization of natural mineral materials in the field of environmental pollution control.
In the UK, food banks and other forms of food aid have become a normalised support mechanism for those living at the sharp end of poverty. Drawing from accounts of those who have used, worked, and volunteered in two of England’s food banks during the Covid-19 pandemic, this article explores some of the key challenges that emerged for food aid during this unique period. In documenting these experiences, the paper concurs with previous work that has identified the expanding role of food banks in providing core welfare support, suggesting an increasingly extended welfare function of food aid. This has implications for understanding the effectiveness of welfare – and the appropriateness of our reliance on voluntary aid – in the post-pandemic period.
Validating the theoretical work on Rayleigh–Taylor instability (RTI) through experiments with an exceptionally clean and well-characterized initial condition has been a long-standing challenge. Experiments were conducted to study the three-dimensional RTI of an SF$_6$–air interface at moderate Atwood numbers. A novel soap film technique was developed to create a discontinuous gaseous interface with controllable initial conditions. Spectrum analysis revealed that the initial perturbation of the soap film interface is half the size of an entire single-mode perturbation. The correlation between the initial interface perturbation and Atwood numbers was determined. Due to the steep and highly curved feature of the initial soap film interface, the early-time evolution of RTI exhibits significant nonlinearity. In the quasi-steady regime, various potential flow models accurately predict the late-time bubble velocities by considering the channel width as the perturbation wavelength. Differently, the late-time spike velocities are described by these potential flow models using the wavelength of the entire single-mode perturbation. These findings indicate that the bubble evolution is influenced primarily by the spatial constraint imposed by walls, while the spike evolution is influenced mainly by the initial curvature of the spike tip. Consequently, a recent potential flow model was adopted to describe the time-varying amplitude growth induced by RTI. Furthermore, the self-similar growth factors for bubbles and spikes were determined from experiments and compared with existing studies, revealing that a large amplitude in the initial soap film interface promotes the spike development.
Special education enrollment increased in Flint following the 2014–2015 Flint Water Crisis, but lead exposure is not plausibly responsible. Labeling Flint children as lead poisoned and/or brain damaged may have contributed to rising special education needs (ie, nocebo effect). To better document this possibility, we surveyed schoolteachers and reviewed neuropsychological assessments of children for indications of negative labeling.
Methods
A survey of Flint and Detroit (control) public schoolteachers using a modified Illness Perception Questionnaire was conducted 5 years post-crisis. We also examined neuropsychological assessments from a recently settled class lawsuit.
Results
Relative to Detroit (n = 24), Flint teachers (n = 11) believed that a higher proportion of their students had harmful lead exposure (91.8% Flint vs 46% Detroit; P = 0.00034), were lead poisoned (51.3% vs 24.3%; P = 0.018), or brain damaged (28.8% vs 12.9%; P = 0.1), even though blood lead of Flint children was always less than half of that of Detroit children. Neuropsychological assessments diagnosed lead poisoning and/or brain damage from water lead exposure in all tested children (n = 8), even though none had evidence of elevated blood lead and a majority had prior learning disability diagnoses.
Conclusion
Teachers’ responses and neuropsychological assessments suggest Flint children were harmed by a nocebo effect.
Exposure to flood, one of the most widespread disasters caused by natural hazards, increases the risk of drowning. Driving through flooded waterways is a cause of death due to flood-related drowning, especially in flood-prone areas. This study aimed at identifying the risk factors for motor vehicle–related drowning in floods and its prevention strategies.
Methods
International and national databases (WOS, PubMed, Scopus, Google Scholar, Magiran, and SID) were searched in the time span from 2000 to 2022. The studies investigating the risk factors relevant to land motor vehicle–related drowning in floods and its prevention strategies were included and analyzed using thematic content analysis.
Results
In 14 eligible studies, risk factors for land motor vehicle–related drowning in floods were identified and categorized in 3 subthemes: driver (3 categories: socio-demographic characteristics, knowledge and attitude, and beliefs); technology (1 category: land motor vehicles); and environment (2 categories: physical and socio-economic environment). Physical and structural measures (1 category: road safety improvement) and nonstructural measures (4 categories: research and education and raising awareness, risk management, promoting social-cognitive beliefs, and reconstruction and improvement of legal infrastructure) were proposed as drowning prevention strategies.
Conclusions
The knowledge, attitude, and belief of the driver; the vehicle; and the environment were the most important risk factors of driving through flooded waterways. These factors should be considered when designing programs and physical and structural strategies for future interventions to curb this dangerous and potentially fatal driving behavior.
Lough Hyne (LH) Marine Nature Reserve in Ireland is a globally recognised biodiversity hotspot that hosts mesophotic-like communities in shallow water, however, major changes have occurred to most of the rocky cliff (>6 m) communities in one or more events between 2010 and 2015. To provide insights into these changes, we compared the sponge assemblage composition on the undersides of different sized, shallow (<1 m) subtidal boulders between 2000 and 2022 at two sites in LH. We also measured sponge species richness at seven sites in 2018. We found that unlike earlier reports from the deeper subtidal reef sponge assemblages, there was no evidence for changes in sponge assemblage composition on the undersides of boulders at either site. We also found high levels of sponge species richness at all seven sites sampled in 2018. We did find differences in sponge assemblages between sites and for different boulder sizes, which we propose is a result of site-specific environmental conditions and disturbance and size–area relationships. Since we found no changes in the shallow subtidal sponge assemblages between 2000 and 2022, our results support the hypothesis that changes to the deeper subtidal sponge assemblages at LH are driven by local processes associated with deeper water in LH, potentially related to the seasonal oxythermocline that forms within LH. Given the national and global importance of LH, understanding the drivers of change is critical to determine if management actions can prevent any future alterations to the LH sponge assemblages and support wider mesophotic community management.
Polycyclic aromatic hydrocarbons (PAHs) are major air pollutants that are ubiquitously produced by the combustion of organic materials, and it is extremely important to identify their pollution sources. In this study, molecular fingerprinting and compound class-specific radiocarbon dating (CCSRA) were performed on PAHs from canal sediments and air samples collected in Kolkata, India’s third largest city (population approximately 16 million), where PAHs pollution has been a serious problem. Average PAH (Σ12-parent PAHs) concentrations in air samples were 65.1 ng m–3 in summer and 70.9 ng m–3 in winter and in canal sediments were 32.7 µg g–1, which are classified as “very high-level” pollution. Molecular fingerprinting using methyl-PAH/PAH (MPAHs/PAHs) ratios and isomer pair ratios with molecular weights of 178, 202, 228, and 276 suggested that wood and coal combustion were the dominant sources of PAHs in the sediment, and that atmospheric PAHs were influenced by oil combustion in addition to them. The fraction of contemporary carbon (ƒC) of sedimentary PAHs (0.056–0.100), together with the extremely low MPAHs/PAHs ratio results, lead to the conclusion that the major source of the high concentration of PAHs in the canals is from coal combustion. On the other hand, the ƒC of atmospheric PAHs (0.272–0.369) was close to the share of biomass fuels in India’s domestic fuel consumption in 2011 (about 35%). Furthermore, the observed ƒC-discrepancy between atmospheric and sedimentary PAHs in the same urban environment was interpreted to give an insight into the loading pathway of PAHs to canal sediments in Kolkata.
We review criteria for comparing the efficiency of Markov chain Monte Carlo (MCMC) methods with respect to the asymptotic variance of estimates of expectations of functions of state, and show how such criteria can justify ways of combining improvements to MCMC methods. We say that a chain on a finite state space with transition matrix P efficiency-dominates one with transition matrix Q if for every function of state it has lower (or equal) asymptotic variance. We give elementary proofs of some previous results regarding efficiency dominance, leading to a self-contained demonstration that a reversible chain with transition matrix P efficiency-dominates a reversible chain with transition matrix Q if and only if none of the eigenvalues of $Q-P$ are negative. This allows us to conclude that modifying a reversible MCMC method to improve its efficiency will also improve the efficiency of a method that randomly chooses either this or some other reversible method, and to conclude that improving the efficiency of a reversible update for one component of state (as in Gibbs sampling) will improve the overall efficiency of a reversible method that combines this and other updates. It also explains how antithetic MCMC can be more efficient than independent and identically distributed sampling. We also establish conditions that can guarantee that a method is not efficiency-dominated by any other method.
El Sistema and Sistema-inspired programmes have become increasingly popular community music education and social welfare initiatives that aim to benefit socially and economically disadvantaged youth. The coronavirus disease 2019 (COVID-19) pandemic significantly disrupted many of these programmes. The purpose of this research was to investigate how eight Canadian El Sistema and Sistema-inspired programmes adapted to the COVID-19 pandemic. We interviewed eight teachers and eight administrators and found that their programming was impacted in relation to four themes: (a) an increased emphasis on social curricula, (b) pedagogical shifts, (c) inclusion of diverse musical voices and (d) adopting anti-racism perspectives. The COVID-19 pandemic response served as a significant catalyst for change for Canadian El Sistema and Sistema-inspired programmes, utilising the disruption to rethink and address participant needs.
Modons, or dipolar vortices, are common and long-lived features of the upper ocean, consisting of a pair of counter-rotating monopolar vortices moving through self-advection. Such structures remain stable over long times and may be important for fluid transport over large distances. Here, we present a semi-analytical method for finding fully nonlinear modon solutions in a multi-layer quasi-geostrophic model with arbitrarily many layers. Our approach is to reduce the problem to a multi-parameter linear eigenvalue problem which can be solved using numerical techniques from linear algebra. The method is shown to replicate previous results for one- and two-layer models and is applied to a three-layer model to find a solution describing a mid-depth propagating, topographic vortex.