To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This work is a numerical and experimental study of a rectangular thin plate undergoing stall flutter at Mach 0.8. This constitutes one of the first studies of this kind where three-dimensionality is fully implemented in a numerical simulation including the test-section effects characterizing wind-tunnel experiments. In order to break down the fluid–structure interaction to its main driving phenomena, an aerodynamic model is proposed that is based on computationally inexpensive steady-state simulations. Two types of dynamic instability are observed in the numerical simulations; Flutter by mode coalescence is promoted at zero flow incidence, however, high bending precludes this from happening for higher values of angle of attack. Stall flutter is instead a nonlinear one-degree type of instability. Both of these instability mechanisms can be explained in terms of hysteretic behaviour of the pressure distribution, which becomes more pronounced at high angles of attack, when a large separation region is formed. Tests were conducted employing titanium alloy plates in order to survive the aerodynamic loads characterizing the wind-tunnel initial transient. However, due to wall interference, high bending was promoted so that the internal stress exceeded the yield values before flutter could be measured. Numerical simulations were in general agreement with the experiment in terms of both amplitude and oscillation frequency.
Limited studies have evaluated the impact of recreation on successful ageing (SA) for individuals with spinal cord injury (SCI) in a longitudinal manner. Most existing SA models emphasise biomedical-based dimensions of physical functioning, which has been criticised as unrealistic and limited, especially for people with disabilities. Various researchers and organisations have proposed that SA needs to be reassessed using more self-perceived, self-reported measurements. Understanding long-term life satisfaction predictors for individuals ageing with SCI is still limited, particularly when including longitudinal recreation participation data. This study, based on Rowe and Kahn's SA model and utilising self-reported measurements, observes the long-term changes in self-reported health status, recreation participation time and social integration levels, and evaluates the long-term impacts of these predictors on life satisfaction among individuals with SCI. The sample comprises individuals with SCI (N = 11,450) who are at least 45 years old at the time of injury or have lived with their injury for over 15 years. Results indicate that when ageing with SCI, life satisfaction increases over time, but their recreation time, social interactions and self-perceived health status decline. Moreover, regular participation in recreational activities, engagement in and maintenance of certain levels of social relationships, and high self-evaluation of health can positively impact life satisfaction during ageing. The study explores the feasibility of using self-perceived measurements to replace biomedical-based variables in Rowe and Kahn's SA model and examines their impacts on life satisfaction among people ageing with disabilities. In the future development of SA models, researchers can incorporate more self-reported, self-evaluated assessment variables to better capture the ageing experience, especially for people with disabilities.
A version of the classical Buffon problem in the plane naturally extends to the setting of any Riemannian surface with constant Gaussian curvature. The Buffon probability determines a Buffon deficit. The relationship between Gaussian curvature and the Buffon deficit is similar to the relationship that the Bertrand–Diguet–Puiseux theorem establishes between Gaussian curvature and both circumference and area deficits.
The current study evaluated cultural values and family processes that may moderate associations between daily racial-ethnic discrimination and distress among Mexican-origin youth. Integrating micro-time (daily diary) and macro-time (longitudinal survey) research design features, we examined familism, family cohesion, and ethnic-racial socialization from youth-, mother-, and father- reports as potential buffers of daily associations between youth racial-ethnic discrimination and youth distress (negative affect and anger). The analytic sample, drawn from the Seguimos Avanzando study, included 317 Mexican-origin adolescents (Mage = 13.5 years) and their parents, recruited from the Midwestern United States. Results indicated that youth-reported familism and family cohesion significantly buffered daily associations between youth racial-ethnic discrimination and youth distress. In contrast, parent-reported familism and family cohesion and some aspects of ethnic-racial socialization exacerbated the discrimination to distress link. The implications of these results are discussed to inform efforts supporting the healthy development of Mexican-origin youth and their families.
In 1851, the colonial administration of the Dutch East Indies established a two-year program to educate young Javanese men to become vaccinators in Batavia (today’s Jakarta). During the following sixty years, the medical curriculum was expanded several times; in 1913, it consisted of a ten-year program. In 1927, the Batavia Medical School, granting degrees equivalent to those of Dutch university-affiliated medical schools, commenced operations. Consequently, a steadily increasing number of Indonesian physicians with various credentials were employed by the colonial health service, plantations, sugar factories and mines, or established private practices. They became a social group that occupied an ambiguous and even paradoxical position somewhere between Europeans and the indigenous population. During the 1910s, this inspired these physicians to obtain credentials and professional recognition equal to those of their European colleagues. Several of them became active in journalism, politics and social movements. During the 1920s, several became radicalised and criticised the nature of colonial society. In the 1930s, following the increasingly repressive nature of colonial society, most of them remained active in the public sphere while a small group dedicated itself to improving medical research and health care. After the transfer of sovereignty from the Netherlands to Indonesia on 27 December 1949, this small cadre reestablished medical education and health care, and built the Indonesian medical profession.
Multimorbidity, the presence of two or more health conditions, has been identified as a possible risk factor for clinical dementia. It is unclear whether this is due to worsening brain health and underlying neuropathology, or other factors. In some cases, conditions may reflect the same disease process as dementia (e.g. Parkinson's disease, vascular disease), in others, conditions may reflect a prodromal stage of dementia (e.g. depression, anxiety and psychosis).
Aims
To assess whether multimorbidity in later life was associated with more severe dementia-related neuropathology at autopsy.
Method
We examined ante-mortem and autopsy data from 767 brain tissue donors from the UK, identifying physical multimorbidity in later life and specific brain-related conditions. We assessed associations between these purported risk factors and dementia-related neuropathological changes at autopsy (Alzheimer's-disease related neuropathology, Lewy body pathology, cerebrovascular disease and limbic-predominant age-related TDP-43 encephalopathy) with logistic models.
Results
Physical multimorbidity was not associated with greater dementia-related neuropathological changes. In the presence of physical multimorbidity, clinical dementia was less likely to be associated with Alzheimer's disease pathology. Conversely, conditions which may be clinical or prodromal manifestations of dementia-related neuropathology (Parkinson's disease, cerebrovascular disease, depression and other psychiatric conditions) were associated with dementia and neuropathological changes.
Conclusions
Physical multimorbidity alone is not associated with greater dementia-related neuropathological change; inappropriate inclusion of brain-related conditions in multimorbidity measures and misdiagnosis of neurodegenerative dementia may better explain increased rates of clinical dementia in multimorbidity
The use of silvopastoral systems with tree legumes is a viable alternative to recover and develop pastures, as they add N to the system influencing pasture growth. This study hypothesized that the herbage and litter of signalgrass (Urochloa decumbens Stapf) is affected by legume trees in the pasture. Treatments were composed of (1) signalgrass + Mimosa caesalpiniifolia Benth.; (2) signalgrass + Gliricidia sepium Jacq.; and (3) signalgrass monoculture. The 3-year experiment followed a randomized complete block design with three replications. Tree legumes were planted in double rows (15 × 1 × 0.5 m), in 1 ha paddocks. Litter samples were taken in five distance points (0, 1.8, 3.7, 5.6 and 7.5 m) perpendicular to tree legume rows. Signalgrass was taller at longer distances from the trees (P < 0.05). Signalgrass height differed between treatments, with taller signalgrass found in pastures mixed with G. sepium (15.6 cm) compared to M. caesalpiniifolia (9 cm) (P < 0.05). Herbage N content decreased with increasing distance from tree rows (P < 0.05). Litter N content followed a similar pattern, ranging from 23 g/kg under the trees to 12 g/kg at 7.5 m away from tree rows. Signalgrass did not grow under the tree crown (0–1.8 m), especially when intercropped with M. caesalpiniifolia. The findings of this study suggest that the type of legume trees used in the silvopastoral system has the potential to modify the pattern of grass growth and content of N in pasture litter.
An absorptive reconfigurable bandstop filter (BSF) with compact size and ultra-wide frequency tuning range using distributed lossy resonators is presented. In each reconfigurable bandstop resonator, a varactor and a PIN diode are utilized as the control and absorption devices. When the PIN diodes are in off and on states, the upper and lower frequency tuning ranges of stopbands can be obtained, respectively. Therefore, the ultra-wide total frequency tuning range which is the combination of the upper and lower frequency tuning ranges can be realized. Meanwhile, the stopband frequency and bandwidth tuning can be independently controlled by bias voltages. The resistances in the varactors and PIN diodes can dissipate the electromagnetic power and thus result in absorptive stopband without using extra absorptive circuits. The stopband suppression level and stopband absorption ratio are proportional to the number of distributed lossy resonators. For demonstration, an absorptive reconfigurable BSF prototype using six pairs of distributed lossy resonators is designed and fabricated. The measured total frequency tuning range is 3.03–6.39 GHz (71%) with the suppression level of 20 dB, while the frequency tuning range with the suppression level of 10 dB is 2.04–6.39 GHz (103%).
This article examines the care provided for the welfare of soldiers by the three combatant countries – China, Korea and Japan – during the East Asian War of 1592–8. Also known as the Imjin War, this large-scale military conflict can also be understood as an encounter between different state cultures and strategies of military medicine. This study focuses on cold-induced injuries, epidemic outbreaks and external wounds suffered during the war. I illuminate provision of prophylactic measures against cold by the Ming state, as well as attempts by the Sino-Chosŏn medical alliance to manage epidemics and treat wounded soldiers. I contrast these measures with the lack of similar centralised support for the Japanese forces, and examine the effect these differences had upon on military outcomes during the war. The difference in the amount of time, efforts and resources that the three combatant states devoted to sick and injured soldiers has implications not only for our understanding of the war but also for illuminating the early modern history of military medicine in East Asia. By exploring East Asian military medicine during and after the Imjin War, this article responds to recent calls for more detailed examination of histories of military medicine in premodern periods and non-European regions.
This work investigates the compressible turbulence induced by Richtmyer–Meshkov (RM) instability using high-resolution Navier–Stokes simulations. Special attention is paid to the characteristics of RM turbulence including the mixing width growth, the turbulent kinetic energy (TKE) decay, the mixing degree, inhomogeneity and anisotropy. Three distinct initial perturbation spectra are designed at the interface to reveal the initial condition imprint on the RM turbulence. Results show that cases with initial large-scale perturbations present a stronger imprint on statistical characteristics and also a quicker growth of mixing width, whereas cases with small-scale perturbations present a faster TKE decay, greater mixing level, higher isotropy and homogeneity. A thorough analysis on the inter-scale energy transfer in RM turbulence is also presented with the coarse-graining approach that exposes the two subfilter-scale (SFS) energy fluxes (i.e. deformation work and baropycnal work). A strong correlation between the nonlinear model of baropycnal work (Fluids, 4(2), 2019) and the simulation results is confirmed for the first time, demonstrating its potential in modelling the RM turbulence. Two primary mechanisms of baropycnal work (the straining and baroclinic generation processes) are explored with this nonlinear model. The evolutions of two SFS energy fluxes exhibit distinct behaviours at various filter scales, in different flow regions and under various flow motions (strain and rotation). It is found that all three cases share the common inter-scale energy transfer dynamics, which is important for modelling the RM turbulence.
Large truss structures have many potential applications in space, such as antennas, telescopes and space solar power plants. In this scenario, a natural concern is the susceptibility of these lightweight structures to be damaged during their operational life, due to impacts, transient thermal states and fatigue phenomena. The inclusion of active elements, equipped with sensor/actuator systems capable of modulating their shape and strength, makes it possible to transform the truss into a smart structure capable of remedying the damage, once it is detected. In this paper, a procedure is described that is capable of restoring at least the basic functionality of a composite truss for space applications, starting with the observation that damage has occurred, regardless of its specific location. The system eigenstructure is used as a benchmark for damage detection, as well as a target characteristic for the subsequent restoration activity. The observer/Kalman filter identification algorithm (OKID), in cascade with the eigensystem realization algorithm (ERA), is adopted to reconstruct, from sensor recordings, the dynamic response of the truss in terms of system state-space representation and eigen-characteristics. Finally, a static output feedback control is developed to recover the low-frequency dynamic behaviour of the truss. The entire procedure is tested using finite element analysis. All activities are coordinated in an innovative procedure that, within a unique Python language code, automatically generates finite element (FE) models, launches finite element analysis (FEA), extracts output data, implements OKID-ERA, processes the control law and applies it to the final FE simulation.
Familial Mediterranean fever is an autosomal recessive autoinflammatory inherited disease. We aimed to evaluate cardiac involvement in children with familial Mediterranean fever during the attack-free period.
Material and Methods:
The prospective study included 75 familial Mediterranean fever patients during the attack-free period and 50 healthy children. Cardiac evaluation was performed using electrocardiography, 24-hour ambulatory Holter monitoring, and conventional and tissue Doppler echocardiography. Aortic stiffness indices were calculated.
Results:
There were no differences between the groups in age, height, sex, body mass index, and arterial blood pressure parameters (p > 0.05). QT and corrected QT dispersion parameters were similar in both groups (p > 0.05). The E wave velocity and the E/A ratio of the mitral and tricuspid valves decreased, and the A wave velocity of the tricuspid and mitral valve increased in familial Mediterranean fever by the Doppler echocardiography (p < 0.05). The myocardial contraction velocities (Sd), early relaxation velocity (Ed), and Ed/late relaxation velocity (Ad) of both ventricles were decreased in familial Mediterranean fever group, whereas the Ad of both ventricles and the interventricular septum was increased in familial Mediterranean fever group. Aortic strain and distensibility were decreased, and pressure strain elastic modules (Ep), pressure strain normalised (Ep*) by diastolic pressure, and aortic stiffness β index were increased in familial Mediterranean fever patients (p < 0.05). When time domain heart rate variability parameters were evaluated, SDNN-i, RMSSD, and PNN50 significantly decreased in familial Mediterranean fever patients (p < 0.05), whereas SDNN and SDANN were similar in both groups (p > 0.05).
Conclusion:
Our findings showed that cardiac involvement could exist in familial Mediterranean fever patients, even during nonattack periods.
We report an experimental study of the formation and evolution of laminar thermal structures generated by a small heat source, with a focus on their correlation to the thermal boundary layer and effects of heating time $t_{heat}$. The experiments are performed over the flux Rayleigh number ($Ra_f$) range $2.1\times 10^6 \leq Ra_f \leq 3.6\times 10^{7}$ and the Prandtl number ($Pr$) range $28.6 \leq Pr \leq 904.7$. The corresponding Rayleigh number ($Ra= t_{heat}\,Ra_{f}/\tau _0\,Pr$) range is $900 \leq Ra \leq 4\times 10^{4}$, where $\tau _0$ is a diffusion time scale. For thermal structures generated by continuous heating (i.e. starting plumes), their formation process exists three characteristic times that are well reflected by changes in the thermal boundary layer thickness. These characteristic times, denoted as $t_{emit}$, $t_{recover}$ and $t_{static}$, correspond to the moments when the plume emission begins and completes, and when the thermal boundary layer becomes quasi-static, respectively. Their $Ra_f$–$Pr$ dependencies are found to be $t_{emit}/\tau _0\sim Ra_f^{-0.41}\,Pr^{0.41}$, $t_{recover}/\tau _0\sim Ra_f^{-0.48}\,Pr^{0.48}$ and $t_{static}/\tau _0\sim Ra_f^{-0.49}\,Pr^{0.33}$, respectively. Thermal structures generated by finite $t_{heat}$ exhibit similar evolution dynamics once $t_{heat} \ge t_{emit}$, with the accelerating stage behaving like starting plumes and the decay stage like thermals (i.e. a finite amount of buoyant fluids). It is further found that their maximum rising velocity experiences a transition in the $Ra$-dependence from $Ra$ to $(Ra\ln Ra)^{0.5}$ at $Ra \simeq 6000$; and their maximum acceleration reaches the value of starting plumes at $t_{heat}\simeq t_{recover}$, and remains unchanged for larger $t_{heat}$. In particular, the maximum rising velocity for the cases with $t_{heat} = t_{recover}$ follows a scaling relation $Ra_f^{0.37}\,Pr^{-0.37}$, in contrast to the relation $Ra_f^{0.48}\,Pr^{-0.48}$ for starting plumes. This study provides a more comprehensive understanding of laminar thermal structures, which are relevant to a range of processes in nature and laboratory systems such as Rayleigh–Bénard convection.
Kirkpatrick and Lixun (2021) maintain that two significant morphosyntactic processes have been at play in early Englishes. These are simplification and regularization. Simplification refers to the relatively simplified inflectional morphology in English today. Kirkpatrick and Lixun (2021) provide an example for the word stan (i.e., stone in Old English) that showed great differences in the singular and plural form in nominative, accusative, genitive and dative case in Old English. Another process is regularization, through which some of the strong verb forms for past tense in English have changed to take the weak or the regular form. To illustrate, the past tense of work was wrought but over time, it has changed to worked.
We present a systematic simulation campaign to investigate the pairwise interaction of two mobile, monodisperse particles submerged in a viscous fluid and subjected to monochromatic oscillating flows. To this end, we employ the immersed boundary method to geometrically resolve the flow around the two particles in a non-inertial reference frame. We neglect gravity to focus on fluid–particle interactions associated with particle inertia and consider particles of three different density ratios aligned along the axis of oscillation. We systematically vary the initial particle distance and the frequency based on which the particles show either attractive or repulsive behaviour by approaching or moving away from each other, respectively. This behaviour is consistently confirmed for the three density ratios investigated, although particle inertia dictates the overall magnitude of the particle dynamics. Based on this, threshold conditions for the transition from attraction to repulsion are introduced that obey the same power law for all density ratios investigated. We furthermore analyse the flow patterns by suitable averaging and decomposition of the flow fields and find competing effects of the vorticity induced by the fluid–particle interactions. Based on these flow patterns, we derive a circulation-based criterion that provides a quantitative measure to categorize the different cases. It is shown that such a criterion provides a consistent measure to distinguish the attractive and repulsive arrangements.
Eriocampa ovata (Linnaeus) (Hymenoptera: Tenthredinidae), commonly known as woolly alder sawfly, is an introduced species to North America. Its larvae have six or more prolegs, a brown spot on the head’s vertex, and are woolly in appearance due to a wax secretion from epidermal glands. The author was contacted about six recently planted alder trees in Winnipeg and Victoria Beach, Manitoba, Canada. The trees were determined to be Alnus hirsuta ‘Harbin’ (Betulaceae) (Prairie HorizonTM Manchurian alder), a tree species that has recently gained popularity in Manitoban urban forestry. The defoliation was determined to be caused by larvae of E. ovata. This is the first published record of E. ovata in Manitoba and the first published record of E. ovata on A. hirsuta. This detection should inform pest inventories for E. ovata in Manitoba and provide the basis for a critical examination of biosecurity measures for A. hirsuta.