We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper introduces a novel ray-tracing methodology for various gradient-index materials, particularly plasmas. The proposed approach utilizes adaptive-step Runge–Kutta integration to compute ray trajectories while incorporating an innovative rasterization step for ray energy deposition. By removing the requirement for rays to terminate at cell interfaces – a limitation inherent in earlier cell-confined approaches – the numerical formulation of ray motion becomes independent of specific domain geometries. This facilitates a unified and concise tracing method compatible with all commonly used curvilinear coordinate systems in laser–plasma simulations, which were previously unsupported or prohibitively complex under cell-confined frameworks. Numerical experiments demonstrate the algorithm’s stability and versatility in capturing diverse ray physics across reduced-dimensional planar, cylindrical and spherical coordinate systems. We anticipate that the rasterization-based approach will pave the way for the development of a generalized ray-tracing toolkit applicable to a broad range of fluid simulations and synthetic optical diagnostics.
Clinical high risk for psychosis (CHR) is often managed with antipsychotic medications, but their effects on neurocognitive performance and clinical outcomes remain insufficiently explored. This study investigates the association between aripiprazole and olanzapine use and cognitive and clinical outcomes in CHR individuals, compared to those receiving no antipsychotic treatment.
Methods
A retrospective analysis was conducted on 127 participants from the Shanghai At Risk for Psychosis (SHARP) cohort, categorized into three groups: aripiprazole, olanzapine, and no antipsychotic treatment. Neurocognitive performance was evaluated using the MATRICS Consensus Cognitive Battery (MCCB), while clinical symptoms were assessed through the Structured Interview for Prodromal Syndromes (SIPS) at baseline, 8 weeks, and one year.
Results
The non-medicated group demonstrated greater improvements in cognitive performance, clinical symptoms, and functional outcomes compared to the medicated groups. Among the antipsychotic groups, aripiprazole was associated with better visual learning outcomes than olanzapine. Improvements in neurocognition correlated significantly with clinical symptom relief and overall functional gains at follow-up assessments.
Conclusions
These findings suggest potential associations between antipsychotic use and cognitive outcomes in CHR populations while recognizing that observed differences may reflect baseline illness severity rather than medication effects alone. Aripiprazole may offer specific advantages over olanzapine, underscoring the importance of individualized risk-benefit evaluations in treatment planning. Randomized controlled trials are needed to establish causality.
This book chapter provides an overview of chronic endometritis (CE), a condition which is increasingly recognized as being associated with recurrent implantation failure, recurrent miscarriage, and fetal demise. The diagnosis of CE is challenging due to the presence of various cell types in the endometrial stroma, making the identification of plasma cells essential. The optimal timing and diagnostic evaluation of endometrial biopsy are still being researched, while immunohistological staining may improve the identification of plasma cells. Hysteroscopy and endometrial culture may also aid in diagnosis and guide antibiotic selection. Although antibiotic treatment has shown improved pregnancy outcomes in cases of CE, there is no established ideal regimen. Overall, this chapter provides valuable information on CE and highlights the need for continued research to improve diagnosis and treatment.
We investigate the statistical properties of kinetic and thermal dissipation rates in two-dimensional/three-dimensional vertical convection of liquid metal ($Pr = 0.032$) within a square cavity. Two situations are specifically discussed: (i) classical vertical convection with no external forces and (ii) vertical magnetoconvection with a horizontal magnetic field. Through an analysis of dissipation fields and a reasonable approximation of buoyancy potential energy sourced from vertical heat flux, the issue of the ‘non-closure of the dissipation balance relation’, which has hindered the application of the GL theory in vertical convection, is partially resolved. The resulting asymptotic power laws are consistent with existing laminar scaling theories and even show certain advantages in validating simulations with large Prandtl number ($Pr$). Additionally, a full-parameter model and prefactors applicable to low-$Pr$ fluids are provided. The extension to magnetoconvection naturally introduces the approximate expression for total buoyancy potential energy and necessitates adjustments to the contributions of kinetic dissipation in both the bulk and boundary layer. The flow dimensionality and boundary layer thickness are key considerations in this analysis. The comprehension of Joule dissipation has been updated: the Lorentz force generates positive dissipation in the bulk by suppressing convection, while in the Hartmann layer, shaping the exponential boundary layer requires the fluid to perform positive work to accelerate, leading to negative dissipation. Finally, the proposed transport equations for magnetoconvection are supported by current direct numerical simulation (DNS) and literature data, and the applicability of the model is discussed.
A clear definition of society helps prevent conceptual misunderstanding. When making practical measurement of societies, it is worth noting that social complexity is actually a jagged concept that encompasses multiple weakly correlated dimensions. Understanding such jaggedness assists interpretation of the divergence between anonymous societies and the social brain hypothesis.
We prove several results showing that every locally finite Borel graph whose large-scale geometry is ‘tree-like’ induces a treeable equivalence relation. In particular, our hypotheses hold if each component of the original graph either has bounded tree-width or is quasi-isometric to a tree, answering a question of Tucker-Drob. In the latter case, we moreover show that there exists a Borel quasi-isometry to a Borel forest, under the additional assumption of (componentwise) bounded degree. We also extend these results on quasi-treeings to Borel proper metric spaces. In fact, our most general result shows treeability of countable Borel equivalence relations equipped with an abstract wallspace structure on each class obeying some local finiteness conditions, which we call a proper walling. The proof is based on the Stone duality between proper wallings and median graphs (i.e., CAT(0) cube complexes). Finally, we strengthen the conclusion of treeability in these results to hyperfiniteness in the case where the original graph has one (selected) end per component, generalizing the same result for trees due to Dougherty–Jackson–Kechris.
Myocardial bridge contributes to chest pain, often accompanied by non-specific complaints.
Aims
Our study aims to determine somatic symptom disorder (SSD) prevalence in patients with myocardial bridge, investigating associated clinical and psychological features.
Method
In this prospective cross-sectional study, we enrolled 1357 participants (337 with and 1020 without myocardial bridge) from Shanghai Renji Hospital. The Somatic Symptom Scale-China questionnaire was used to assess SSD. Depressive and anxiety disorders were assessed by the Patient Health Questionnaire-9 (PHQ-9) and Generalised Anxiety Disorder-7 (GAD-7).
Results
The prevalence of SSD in the myocardial bridge group was 63.2%, higher than the group without myocardial bridge (53.8%). Patients with myocardial bridge were at an increased risk of SSD (odds ratio 1.362, 95% CI 1.026–1.809; P = 0.033). There were no differences in the mean PHQ-9 scores (3.2 ± 3.4 v. 3.2 ± 4.1; P = 0.751) or GAD-7 scores (2.5 ± 3.0 v. 2.3 ± 3.7; P = 0.143) between the two groups. Among patients with myocardial bridge, gender was the only independent risk factor for SSD. Women were 3.119 times more likely to experience SSD compared with men (95% CI 1.537–6.329; P = 0.002).
Conclusions
Our findings emphasise the high prevalence and severity of SSD among patients with myocardial bridge. The screening for SSD should be of particular concern, especially among female patients.
Contrafreeloading (CFL) refers to animals’ tendency to prefer obtaining food through effort rather than accessing food that is freely available. Researchers have proposed various hypotheses to explain this intriguing phenomenon, but few studies have provided a comprehensive analysis of the factors influencing this behaviour. In this study, we observed the choice of alternative food containers in budgerigars (Melopsittacus undulatus) to investigate their CFL tendencies and the effects of pre-training, food deprivation, and effort required on the CFL tasks. The results showed that budgerigars did not exhibit significant difference in their first choices or the time interacting with less challenging versus more challenging food containers. Moreover, when evaluating each budgerigar’s CFL level, only half of them were identified as strong contrafreeloaders. Thus, we suggest that budgerigars exhibit an intermediate CFL level that lies somewhere between a strong tendency and the absence of such behaviour. Furthermore, we also found that food-deprived budgerigars tended to select less challenging food containers, and pre-trained budgerigars were more likely to choose highly challenging food containers than moderately challenging food containers, which means that the requirement of only a reasonable effort (access to food from moderately challenging food containers in this study) and the experience of pre-training act to enhance their CFL levels, whereas the requirement of greater effort and the experience of food deprivation act to decrease their CFL levels. Studying animal CFL can help understand why animals choose to expend effort to obtain food rather than accessing it for free, and it also has implications for setting feeding environments to enhance the animal welfare of captive and domesticated animals.
This article is dedicated to investigating limit behaviours of invariant measures with respect to delay and system parameters of 3D Navier–Stokes–Voigt equations. Firstly, the well-posedness of such a system is obtained on arbitrary open sets that satisfy the Poincaré inequality, and then a unique minimal pullback attractor is attained by using the energy equation method and asymptotic compactness property. Furthermore, we construct a family of invariant Borel probability measures, which are supported on the pullback attractors. Specifically, when the external forcing terms are periodic in time, the periodic invariant measure can be obtained. Finally, as the delay approaches zero and system parameters tend to some numbers, the limit of the invariant measure sequences for this class of equations must be the invariant measure of the corresponding limit equations.
The total number of Japanese casualties in the Asia-Pacific War (1937-1945) is estimated to be around 3.1 million, with military fatalities accounting for 2.3 million. In contrast to the popular image in Japan of these war dead as “noble heroes” (eirei) who fought valiantly in service of the nation, however, the realities of war were quite different. Rather than being killed in combat, some sixty percent of soldiers (1.4 million) died away from the battlefield, succumbing to disease and starvation. Others suffered from the military's failure to secure dependable supply lines to provide food and equipment replenishments, resulting in a large number of otherwise preventable deaths. In this article, Professor Yoshida Yutaka focuses on the grim realities of war death as experienced by ordinary soldiers in the Imperial Japanese Army, a topic rarely touched upon by scholars. Combining a social historical approach with rigorous statistical analysis, Yoshida sheds light on the institutional issues and peculiarities of what was once proudly known as the “Emperor's military.”
where $\Omega $ is homogeneous of degree zero, integrable on $S^{d-1}$ and has a vanishing moment of order one, a is a Lipschitz function on $\mathbb {R}^d$. The authors proved that if
with $\beta \in (1,\,\infty )$, then $T_{\Omega ,a}$ is bounded on Triebel–Lizorkin spaces $\dot {F}_{p}^{0,q}(\mathbb {R}^d)$ for $1+\frac {1}{2\beta -1}<p,q<2\beta $.
In isolated subclavian artery, abnormal aortic arch development causes a loss of continuity with the aorta. Patent ductus arteriosus is a known cause of congestive heart failure. Herein, we present a rare case of congestive heart failure caused by isolated right subclavian artery and right patent ductus arteriosus associated with left-sided aortic arch treated by early closure.
Cleavers, an annual or winter annual broadleaf weed in the Rubiaceae family, has become troublesome in the wheat fields of the Huang-Huai-Hai region in China due to its herbicide resistance. In North America the common name of the plant is stickwilly; in China it known as cleavers. Four populations of cleavers (JS-15, SD-10, JS-22, and AH-20) were collected from wheat fields in Jiangsu, Shandong, and Anhui provinces, where the plant was not being controlled with applications of florasulam. The aims of this study were to identify the herbicide resistance patterns and investigate the mechanism underlying florasulam resistance. Whole-plant dose-response experiments revealed a notable variation in the degree of resistance exhibited by three specific populations toward florasulam, in comparison to the most sensitive population (S and AH-9), with the highest resistance index reaching 841.4. A gene-sequencing assay for acetolactate synthase (ALS) found that plants that were resistant to ALS from the JS-15, JS-22, and AH-20 populations had a Trp-574-Leu mutation, while no known ALS resistance mutations were discovered in SD-10 plants. In vitro ALS enzyme activity assays also indicated that the extractable ALS from JS-15, JS-22, and AH-20 plants was greatly resistant to florasulam relative to plants that are susceptible. Additionally, according to the resistance rating system, all resistant populations were susceptible to carfentrazone-ethyl + MCPA-sodium and bipyrazone + fluroxypyr-methyl. AH-20, JS-15, and JS-22 exhibited resistance to selected ALS, 4-hydroxyphenylpyruvate dioxygenase (HPPD), and photosystem II (PS II) complex inhibitors, demonstrating RR and RRR resistance profiles, whereas AH-9 displayed sensitivity to virtually all tested agents. The SD-10 population, on the other hand, exhibited RR and RRR resistance to HPPD and PS II inhibitors, and sensitivity to tribenuron-methyl. These findings indicate that a target site–based mechanism drives resistance to the ALS inhibitor florasulam in populations of cleavers, but nontarget site resistance may also have contributed to resistance, but this was not investigated. Other herbicides with different sites of action were tested and were active against cleavers.
This chapter reviews alternative methods for estimating the integrated covariance matrix (ICM) using high-frequency data and their properties. The high-frequency data are assumed to come from a continuous-time model. The alternative estimators are justified by their asymptotic properties under the infill asymptotic scheme, which requires that the time interval Δ between any two consecutive observations go to zero. When reviewing the methods, we separate the methods that assume the dimension of the ICM is fixed and those that assume the dimension of the ICM goes to infinity with the sample size. Comparisons of the performances of alternative ICM estimators in portfolio choice are discussed.