To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we prove several results on the exponential decay in $L^{2}$ norm of the KdV equation on the real line with localized dampings. First, for the linear KdV equation, the exponential decay holds if and only if the averages of the damping coefficient on all intervals of a fixed length have a positive lower bound. Moreover, under the same damping condition, the exponential decay holds for the (nonlinear) KdV equation with small initial data. Finally, with the aid of certain properties of propagation of regularity in Bourgain spaces for solutions of the associated linear system and the unique continuation property, the exponential decay for the KdV equation with large data holds if the damping coefficient has a positive lower bound on $E$, where $E$ is equidistributed over the real line and the complement $E^{c}$ has a finite Lebesgue measure.
We provide examples of infinitesimally Hilbertian, rectifiable, Ahlfors regular metric measure spaces having pmGH-tangents that are not infinitesimally Hilbertian.
We introduce an approach and a software tool for solving coupled energy networks composed of gas and electric power networks. Those networks are coupled to stochastic fluctuations to address possibly fluctuating demand due to fluctuating demands and supplies. Through computational results, the presented approach is tested on networks of realistic size.
We determine reductions of $2$-dimensional, irreducible, semistable, and non-crystalline representations of $\mathrm {Gal}\left (\overline {\mathbb {Q}}_p/\mathbb {Q}_p\right )$ with Hodge–Tate weights $0 < k-1$ and with $\mathcal L$-invariant whose p-adic norm is sufficiently large, depending on k. Our main result provides the first systematic examples of the reductions for$k \geq p$.
Topological complexity naturally appears in the motion planning in robotics. In this paper we consider the problem of finding topological complexity of real Grassmann manifolds $G_k(\mathbb {R}^{n})$. We use cohomology methods to give estimates on the zero-divisor cup-length of $G_k(\mathbb {R}^{n})$ for various $2\leqslant k< n$, which in turn give us lower bounds on topological complexity. Our results correct and improve several results from Pavešić (Proc. Roy. Soc. Edinb. A151 (2021), 2013–2029).