To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A graph $H$ is common if the number of monochromatic copies of $H$ in a 2-edge-colouring of the complete graph $K_n$ is asymptotically minimised by the random colouring. Burr and Rosta, extending a famous conjecture of Erdős, conjectured that every graph is common. The conjectures of Erdős and of Burr and Rosta were disproved by Thomason and by Sidorenko, respectively, in the late 1980s. Collecting new examples of common graphs had not seen much progress since then, although very recently a few more graphs were verified to be common by the flag algebra method or the recent progress on Sidorenko’s conjecture. Our contribution here is to provide several new classes of tripartite common graphs. The first example is the class of so-called triangle trees, which generalises two theorems by Sidorenko and answers a question of Jagger, Šťovíček, and Thomason from 1996. We also prove that, somewhat surprisingly, given any tree $T$, there exists a triangle tree such that the graph obtained by adding $T$ as a pendant tree is still common. Furthermore, we show that adding arbitrarily many apex vertices to any connected bipartite graph on at most $5$ vertices yields a common graph.
In this paper, we prove the well-known Erdős–Lax inequality [4] in a sharpened form. As a consequence, another widely used inequality due to Ankeny and Rivlin [1] gets sharpened. These results may be useful in various applications that required the Erdős–Lax and the Ankeny–Rivlin inequalities.
It is standard in chemistry to represent a sequence of reactions by a single overall reaction, often called a complex reaction in contrast to an elementary reaction. Photosynthesis $6 \text{CO}_2+6 \text{H}_2\text{O} \longrightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{O}_2$ is an example of such complex reaction. We introduce a mathematical operation that corresponds to summing two chemical reactions. Specifically, we define an associative and non-communicative operation on the product space ${\mathbb{N}}_0^n\times {\mathbb{N}}_0^n$ (representing the reactant and the product of a chemical reaction, respectively). The operation models the overall effect of two reactions happening in succession, one after the other. We study the algebraic properties of the operation and apply the results to stochastic reaction networks (RNs), in particular to reachability of states, and to reduction of RNs.
This article deals with kinetic Fokker–Planck equations with essentially bounded coefficients. A weak Harnack inequality for nonnegative super-solutions is derived by considering their log-transform and adapting an argument due to S. N. Kružkov (1963). Such a result rests on a new weak Poincaré inequality sharing similarities with the one introduced by W. Wang and L. Zhang in a series of works about ultraparabolic equations (2009, 2011, 2017). This functional inequality is combined with a classical covering argument recently adapted by L. Silvestre and the second author (2020) to kinetic equations.
We show that the diameter of a uniformly drawn spanning tree of a simple connected graph on n vertices with minimal degree linear in n is typically of order $\sqrt{n}$. A byproduct of our proof, which is of independent interest, is that on such graphs the Cheeger constant and the spectral gap are comparable.
The optimal expansion of a power system with reduced carbon footprint entails dealing with uncertainty about the distribution of the random variables involved in the decision process. Optimisation under ambiguity sets provides a mechanism to suitably deal with such a setting. For two-stage stochastic linear programs, we propose a new model that is between the optimistic and pessimistic paradigms in distributionally robust stochastic optimisation. When using Wasserstein balls as ambiguity sets, the resulting optimisation problem has nonsmooth convex constraints depending on the number of scenarios and a bilinear objective function. We propose a decomposition method along scenarios that converges to a solution, provided a global optimisation solver for bilinear programs with polyhedral feasible sets is available. The solution procedure is applied to a case study on expansion of energy generation that takes into account sustainability goals for 2050 in Europe, under uncertain future market conditions.
In this paper, we establish a new fractional interpolation inequality for radially symmetric measurable functions on the whole space $R^{N}$ and a new compact imbedding result about radially symmetric measurable functions. We show that the best constant in the new interpolation inequality can be achieved by a radially symmetric function. As applications of this compactness result, we study the existence of ground states of the nonlinear fractional Schrödinger equation on the whole space $R^{N}$. We also prove an existence result of standing waves and prove their orbital stability.
Given a quiver with potential $(Q,W)$, Kontsevich–Soibelman constructed a cohomological Hall algebra (CoHA) on the critical cohomology of the stack of representations of $(Q,W)$. Special cases of this construction are related to work of Nakajima, Varagnolo, Schiffmann–Vasserot, Maulik–Okounkov, Yang–Zhao, etc. about geometric constructions of Yangians and their representations; indeed, given a quiver Q, there exists an associated pair $(\widetilde{Q}, \widetilde{W})$ whose CoHA is conjecturally the positive half of the Maulik–Okounkov Yangian $Y_{\text {MO}}(\mathfrak {g}_{Q})$.
For a quiver with potential $(Q,W)$, we follow a suggestion of Kontsevich–Soibelman and study a categorification of the above algebra constructed using categories of singularities. Its Grothendieck group is a K-theoretic Hall algebra (KHA) for quivers with potential. We construct representations using framed quivers, and we prove a wall-crossing theorem for KHAs. We expect the KHA for $(\widetilde{Q}, \widetilde{W})$ to recover the positive part of quantum affine algebra $U_{q}(\widehat {\mathfrak {g}_{Q}})$ defined by Okounkov–Smirnov.
The random-cluster model is a unifying framework for studying random graphs, spin systems and electrical networks that plays a fundamental role in designing efficient Markov Chain Monte Carlo (MCMC) sampling algorithms for the classical ferromagnetic Ising and Potts models. In this paper, we study a natural non-local Markov chain known as the Chayes–Machta (CM) dynamics for the mean-field case of the random-cluster model, where the underlying graph is the complete graph on n vertices. The random-cluster model is parametrised by an edge probability p and a cluster weight q. Our focus is on the critical regime: $p = p_c(q)$ and $q \in (1,2)$, where $p_c(q)$ is the threshold corresponding to the order–disorder phase transition of the model. We show that the mixing time of the CM dynamics is $O({\log}\ n \cdot \log \log n)$ in this parameter regime, which reveals that the dynamics does not undergo an exponential slowdown at criticality, a surprising fact that had been predicted (but not proved) by statistical physicists. This also provides a nearly optimal bound (up to the $\log\log n$ factor) for the mixing time of the mean-field CM dynamics in the only regime of parameters where no non-trivial bound was previously known. Our proof consists of a multi-phased coupling argument that combines several key ingredients, including a new local limit theorem, a precise bound on the maximum of symmetric random walks with varying step sizes and tailored estimates for critical random graphs. In addition, we derive an improved comparison inequality between the mixing time of the CM dynamics and that of the local Glauber dynamics on general graphs; this results in better mixing time bounds for the local dynamics in the mean-field setting.
Any Lipschitz map $f : M \to N$ between two pointed metric spaces may be extended in a unique way to a bounded linear operator $\widehat {f} : \mathcal {F}(M) \to \mathcal {F}(N)$ between their corresponding Lipschitz-free spaces. In this paper, we give a necessary and sufficient condition for $\widehat {f}$ to be compact in terms of metric conditions on $f$. This extends a result by A. Jiménez-Vargas and M. Villegas-Vallecillos in the case of non-separable and unbounded metric spaces. After studying the behaviour of weakly convergent sequences made of finitely supported elements in Lipschitz-free spaces, we also deduce that $\widehat {f}$ is compact if and only if it is weakly compact.
We give an algebro-geometric construction of the Hitchin connection, valid also in positive characteristic (with a few exceptions). A key ingredient is a substitute for the Narasimhan–Atiyah–Bott Kähler form that realizes the Chern class of the determinant-of-cohomology line bundle on the moduli space of bundles on a curve. As replacement we use an explicit realisation of the Atiyah class of this line bundle, based on the theory of the trace complex due to Beilinson–Schechtman and Bloch–Esnault.
The classical Andrásfai-Erdős-Sós theorem considers the chromatic number of $K_{r + 1}$-free graphs with large minimum degree, and in the case, $r = 2$ says that any n-vertex triangle-free graph with minimum degree greater than $2/5 \cdot n$ is bipartite. This began the study of the chromatic profile of triangle-free graphs: for each k, what minimum degree guarantees that a triangle-free graph is k-colourable? The chromatic profile has been extensively studied and was finally determined by Brandt and Thomassé. Triangle-free graphs are exactly those in which each neighbourhood is one-colourable. As a natural variant, Luczak and Thomassé introduced the notion of a locally bipartite graph in which each neighbourhood is 2-colourable. Here we study the chromatic profile of the family of graphs in which every neighbourhood is b-colourable (locally b-partite graphs) as well as the family where the common neighbourhood of every a-clique is b-colourable. Our results include the chromatic thresholds of these families (extending a result of Allen, Böttcher, Griffiths, Kohayakawa and Morris) as well as showing that every n-vertex locally b-partite graph with minimum degree greater than $(1 - 1/(b + 1/7)) \cdot n$ is $(b + 1)$-colourable. Understanding these locally colourable graphs is crucial for extending the Andrásfai-Erdős-Sós theorem to non-complete graphs, which we develop elsewhere.
We show that complete intersection log del Pezzo surfaces with amplitude one in weighted projective spaces are uniformly $K$-stable. As a result, they admit an orbifold Kähler–Einstein metric.
In this work, we study foliations of arbitrary codimension $\mathfrak{F}$ with integrable normal bundles on complete Riemannian manifolds. We obtain a necessary and sufficient condition for $\mathfrak{F}$ to be totally geodesic. For this, we introduce a special number $\mathfrak{G}_{\mathfrak{F}}^{\alpha}$ that measures when the foliation ceases to be totally geodesic. Furthermore, applying some maximum principle we deduce geometric properties for $\mathfrak{F}$. We conclude with a geometrical version of Novikov’s theorem (Trans. Moscow Math. Soc. (1965), 268–304), for Riemannian compact manifolds of arbitrary dimension.
Recently Ovsienko and Tabachnikov considered extensions of Somos and Gale-Robinson sequences, defined over the algebra of dual numbers. Ovsienko used the same idea to construct so-called shadow sequences derived from other nonlinear recurrence relations exhibiting the Laurent phenomenon, with the original motivation being the hope that these examples should lead to an appropriate notion of a cluster superalgebra, incorporating Grassmann variables. Here, we present various explicit expressions for the shadow of Somos-4 sequences and describe the solution of a general Somos-4 recurrence defined over the $\mathbb{C}$-algebra of dual numbers from several different viewpoints: analytic formulae in terms of elliptic functions, linear difference equations, and Hankel determinants.
Let $f\colon (\mathbb {R}^{3},0)\to (\mathbb {R}^{4},0)$ be an analytic map germ with isolated instability. Its link is a stable map which is obtained by taking the intersection of the image of $f$ with a small enough sphere $S^{3}_\epsilon$ centred at the origin in $\mathbb {R}^{4}$. If $f$ is of fold type, we define a tree, that we call dual tree, that contains all the topological information of the link and we prove that in this case it is a complete topological invariant. As an application we give a procedure to obtain normal forms for any topological class of fold type.
In this paper, we show that the permeability of a porous material (Tartar (1980)) and that of a bubbly fluid (Lipton and Avellaneda. Proc. R. Soc. Edinburgh Sect. A: Math. 114 (1990), 71–79) are limiting cases of the complexified version of the two-fluid models posed in Lipton and Avellaneda (Proc. R. Soc. Edinburgh Sect. A: Math. 114 (1990), 71–79). We assume the viscosity of the inclusion fluid is $z\mu _1$ and the viscosity of the hosting fluid is $\mu _1\in \mathbb {R}^{+}$, $z\in \mathbb {C}$. The proof is carried out by the construction of solutions for large $|z|$ and small $|z|$ with an iteration process similar to the one used in Bruno and Leo (Arch. Ration. Mech. Anal. 121 (1993), 303–338) and Golden and Papanicolaou (Commun. Math. Phys. 90 (1983), 473–491) and the analytic continuation. Moreover, we also show that for a fixed microstructure, the permeabilities of these three cases share the same integral representation formula (3.17) with different values of contrast parameter $s:=1/(z-1)$, as long as $s$ is outside the interval $\left [-\frac {2E_2^{2}}{1+2E_2^{2}},-\frac {1}{1+2E_1^{2}}\right ]$, where the positive constants $E_1$ and $E_2$ are the extension constants that depend only on the geometry of the periodic pore space of the material.
For a uniform random labelled tree, we find the limiting distribution of tree parameters which are stable (in some sense) with respect to local perturbations of the tree structure. The proof is based on the martingale central limit theorem and the Aldous–Broder algorithm. In particular, our general result implies the asymptotic normality of the number of occurrences of any given small pattern and the asymptotic log-normality of the number of automorphisms.
We study the effect of population mobility on the transmission dynamics of infectious diseases by considering a susceptible-exposed-infectious-recovered (SEIR) epidemic model with graph Laplacian diffusion, that is, on a weighted network. First, we establish the existence and uniqueness of solutions to the SEIR model defined on a weighed graph. Then by constructing Liapunov functions, we show that the disease-free equilibrium is globally asymptotically stable if the basic reproduction number is less than unity and the endemic equilibrium is globally asymptotically stable if the basic reproduction number is greater than unity. Finally, we apply our generalized weighed graph to Watts–Strogatz network and carry out numerical simulations, which demonstrate that degrees of nodes determine peak numbers of the infectious population as well as the time to reach these peaks. It also indicates that the network has an impact on the transient dynamical behaviour of the epidemic transmission.