To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that Calabi–Yau fibrations over curves are uniformly K-stable in an adiabatic sense if and only if the base curves are K-stable in the log-twisted sense. Moreover, we prove that there are cscK metrics for such fibrations when the total spaces are smooth.
This article is dedicated to investigating limit behaviours of invariant measures with respect to delay and system parameters of 3D Navier–Stokes–Voigt equations. Firstly, the well-posedness of such a system is obtained on arbitrary open sets that satisfy the Poincaré inequality, and then a unique minimal pullback attractor is attained by using the energy equation method and asymptotic compactness property. Furthermore, we construct a family of invariant Borel probability measures, which are supported on the pullback attractors. Specifically, when the external forcing terms are periodic in time, the periodic invariant measure can be obtained. Finally, as the delay approaches zero and system parameters tend to some numbers, the limit of the invariant measure sequences for this class of equations must be the invariant measure of the corresponding limit equations.
What proportion of integers $n \leq N$ may be expressed as $x^2 + dy^2$ for some $d \leq \Delta $, with $x,y$ integers? Writing $\Delta = (\log N)^{\log 2} 2^{\alpha \sqrt {\log \log N}}$ for some $\alpha \in (-\infty , \infty )$, we show that the answer is $\Phi (\alpha ) + o(1)$, where $\Phi $ is the Gaussian distribution function $\Phi (\alpha ) = \frac {1}{\sqrt {2\pi }} \int ^{\alpha }_{-\infty } e^{-x^2/2} dx$.
A consequence of this is a phase transition: Almost none of the integers $n \leq N$ can be represented by $x^2 + dy^2$ with $d \leq (\log N)^{\log 2 - \varepsilon }$, but almost all of them can be represented by $x^2 + dy^2$ with $d \leq (\log N)^{\log 2 + \varepsilon}\kern-1.5pt$.
We describe the structure of regular codimension $1$ foliations with numerically projectively flat tangent bundle on complex projective manifolds of dimension at least $4$. Along the way, we prove that either the normal bundle of a regular codimension $1$ foliation is pseudo-effective, or its conormal bundle is nef.
Given a polarised abelian variety over a number field, we provide totally explicit upper bounds for the cardinality of the rational points whose Néron-Tate height is less than a small threshold. These imply new estimates for the number of torsion points as well as the minimal height of a non-torsion point. Our bounds involve the Faltings height and dimension of the abelian variety together with the degrees of the polarisation and the number field but we also get a stronger statement where we use certain successive minima associated to the period lattice at a fixed archimedean place, in the spirit of a result of David for elliptic curves.
Let F be a non-archimedean locally compact field of residual characteristic p, let $G=\operatorname {GL}_{r}(F)$ and let $\widetilde {G}$ be an n-fold metaplectic cover of G with $\operatorname {gcd}(n,p)=1$. We study the category $\operatorname {Rep}_{\mathfrak {s}}(\widetilde {G})$ of complex smooth representations of $\widetilde {G}$ having inertial equivalence class $\mathfrak {s}=(\widetilde {M},\mathcal {O})$, which is a block of the category $\operatorname {Rep}(\widetilde {G})$, following the ‘type theoretical’ strategy of Bushnell-Kutzko.
Precisely, first we construct a ‘maximal simple type’ $(\widetilde {J_{M}},\widetilde {\lambda }_{M})$ of $\widetilde {M}$ as an $\mathfrak {s}_{M}$-type, where $\mathfrak {s}_{M}=(\widetilde {M},\mathcal {O})$ is the related cuspidal inertial equivalence class of $\widetilde {M}$. Along the way, we prove the folklore conjecture that every cuspidal representation of $\widetilde {M}$ could be constructed explicitly by a compact induction. Secondly, we construct ‘simple types’ $(\widetilde {J},\widetilde {\lambda })$ of $\widetilde {G}$ and prove that each of them is an $\mathfrak {s}$-type of a certain block $\operatorname {Rep}_{\mathfrak {s}}(\widetilde {G})$. When $\widetilde {G}$ is either a Kazhdan-Patterson cover or Savin’s cover, the corresponding blocks turn out to be those containing discrete series representations of $\widetilde {G}$. Finally, for a simple type $(\widetilde {J},\widetilde {\lambda })$ of $\widetilde {G}$, we describe the related Hecke algebra $\mathcal {H}(\widetilde {G},\widetilde {\lambda })$, which turns out to be not far from an affine Hecke algebra of type A, and is exactly so if $\widetilde {G}$ is one of the two special covers mentioned above.
We leave the construction of a ‘semi-simple type’ related to a general block $\operatorname {Rep}_{\mathfrak {s}}(\widetilde {G})$ to a future phase of the work.
We show that the sets of $d$-dimensional Latin hypercubes over a non-empty set $X$, with $d$ running over the positive integers, determine an operad which is isomorphic to a sub-operad of the endomorphism operad of $X$. We generalise this to categories with finite products, and then further to internal versions for certain Cartesian closed monoidal categories with pullbacks.
Mukai’s program in [16] seeks to recover a K3 surface X from any curve C on it by exhibiting it as a Fourier–Mukai partner to a Brill–Noether locus of vector bundles on the curve. In the case X has Picard number one and the curve $C\in |H|$ is primitive, this was confirmed by Feyzbakhsh in [11, 13] for $g\geq 11$ and $g\neq 12$. More recently, Feyzbakhsh has shown in [12] that certain moduli spaces of stable bundles on X are isomorphic to the Brill–Noether locus of curves in $|H|$ if g is sufficiently large. In this paper, we work with irreducible curves in a nonprimitive ample linear system $|mH|$ and prove that Mukai’s program is valid for any irreducible curve when $g\neq 2$, $mg\geq 11$ and $mg\neq 12$. Furthermore, we introduce the destabilising regions to improve Feyzbakhsh’s analysis in [12]. We show that there are hyper-Kähler varieties as Brill–Noether loci of curves in every dimension.
We are concerned with the micro-macro Parareal algorithm for the simulation of initial-value problems. In this algorithm, a coarse (fast) solver is applied sequentially over the time domain and a fine (time-consuming) solver is applied as a corrector in parallel over smaller chunks of the time interval. Moreover, the coarse solver acts on a reduced state variable, which is coupled with the fine state variable through appropriate coupling operators. We first provide a contribution to the convergence analysis of the micro-macro Parareal method for multiscale linear ordinary differential equations. Then, we extend a variant of the micro-macro Parareal algorithm for scalar stochastic differential equations (SDEs) to higher-dimensional SDEs.
This study aims to formulate a highly accurate numerical method, specifically a seventh-order Hermite technique with an error term of sixth order, to solve the Fisher and Burgers–Fisher equations. This technique employs a combination of orthogonal collocation on the finite element method and hepta Hermite basis functions. By ensuring continuity of the dependent variable and its first three derivatives across the entire solution domain, it achieves a remarkable level of accuracy and smoothness. The space discretization is handled through the application of hepta Hermite polynomials, while the time discretization is managed by the Crank–Nicholson scheme. The stability and convergence analysis of the scheme are discussed in detail. To validate the accuracy of the proposed technique, three examples are taken. The results obtained from these examples are thoroughly analysed and compared against the exact solutions and reliable data from the existing literature. It is established that the proposed technique is easy to implement and gives better results as compared with existing ones.
We provide two constructions of Gaussian random holomorphic sections of a Hermitian holomorphic line bundle $(L,h_{L})$ on a Hermitian complex manifold $(X,\Theta )$, that are particularly interesting in the case where the space of $\mathcal {L}^2$-holomorphic sections $H^{0}_{(2)}(X,L)$ is infinite dimensional. We first provide a general construction of Gaussian random holomorphic sections of L, which, if $H^{0}_{(2)}(X,L)$ is infinite dimensional, are almost never $\mathcal {L}^2$-integrable on X. The second construction combines the abstract Wiener space theory with the Berezin–Toeplitz quantization and yields a Gaussian ensemble of random $\mathcal {L}^2$-holomorphic sections. Furthermore, we study their random zeros in the context of semiclassical limits, including their distributions, large deviation estimates, local fluctuations and hole probabilities.
In this paper, we report the spatiotemporal dynamics of an intraguild predation (IGP)-type predator–prey model incorporating harvesting and prey-taxis. We first discuss the local and global existence of the classical solutions in N-dimensional space. It is found that the model has a global classical solution when controlling the prey-taxis coefficient in a certain range. Thereafter, we focus on the existence of the steady-state bifurcation. Moreover, we theoretically investigate the properties of the bifurcating solution near the steady-state bifurcation critical threshold. As a consequence, the spatial pattern formation of this model can be theoretically confirmed. Importantly, by means of rigorous theoretical derivation, we provide discriminant criteria on the stability of the bifurcating solution. Finally, the complicated patterns are numerically displayed. It is demonstrated that the harvesting and prey-taxis significantly affect the pattern formation of this IGP-type predator–prey model. Our main results of this paper reveal that (i) The repulsive prey-taxis could destabilize the spatial homogeneity, while the attractive prey-taxis effect and self-diffusion will stabilize the spatial homogeneity of this model. (ii) Numerical results suggest that over-harvesting for prey or predators is not advisable, it can lead to an ecological imbalance due to a significant reduction in population numbers. However, harvesting within a certain range is a feasible approach.
In this article, we study the behavior of complete two-sided hypersurfaces immersed in the hyperbolic space $\mathbb H^{n+1}$. Initially, we introduce the concept of the linearized curvature function $\mathcal {F}_{r,s}$ of a two-sided hypersurface, its associated modified Newton transformation $\mathcal {P}_{r,s}$ and its naturally attached differential operator $\mathcal {L}_{r,s}$. Then, we obtain two formulas for differential operator $\mathcal {L}_{r,s}$ acting on the height function of a two-sided hypersurface and, for the case where their support functions are related by a negative constant, we derive two new formulas for the Newton transformation $P_{r}$ and the modified Newton transformation $\mathcal {P}_{r,s}$ acting on a gradient of the height function. Finally, these formulas, jointly with suitable maximum principles, enable us to establish our rigidity and nonexistence results concerning complete two-sided hypersurfaces in $\mathbb H^{n+1}$.
In sharp contrast to the Hardy space case, the algebraic properties of Toeplitz operators on the Bergman space are quite different and abnormally complicated. In this paper, we study the finite-rank problem for a class of operators consisting of all finite linear combinations of Toeplitz products with monomial symbols on the Bergman space of the unit disk. It turns out that such a problem is equivalent to the problem of when the corresponding finite linear combination of rational functions is zero. As an application, we consider the finite-rank problem for the commutator and semi-commutator of Toeplitz operators whose symbols are finite linear combinations of monomials. In particular, we construct many motivating examples in the theory of algebraic properties of Toeplitz operators.
We obtain asymptotics for the average value taken by a Vassiliev invariant on knots appearing as periodic orbits of an Axiom A flow on $S^3.$ The methods used also give asymptotics for the writhe of periodic orbits. Our results are analogous to those of G. Contreras [Average linking numbers of closed orbits of hyperbolic flows. J. Lond. Math. Soc. (2)51 (1995), 614–624] for average linking numbers.
We give a complete description of Rees quotients of free inverse semigroups given by positive relators that satisfy nontrivial identities, including identities in signature with involution. They are finitely presented in the class of all inverse semigroups. Those that satisfy a nontrivial semigroup identity have polynomial growth and can be given by an irredundant presentation with at most four relators. Those that satisfy a nontrivial identity in signature with involution, but which do not satisfy a nontrivial semigroup identity, have exponential growth and fall within two infinite families of finite presentations with two generators. The first family involves an unbounded number of relators and the other involves presentations with at most four relators of unbounded length. We give a new sufficient condition for which a finite set X of reduced words over an alphabet $A\cup A^{-1}$ freely generates a free inverse subsemigroup of $FI_A$ and use it in our proofs.
We study the computational problem of rigorously describing the asymptotic behavior of topological dynamical systems up to a finite but arbitrarily small pre-specified error. More precisely, we consider the limit set of a typical orbit, both as a spatial object (attractor set) and as a statistical distribution (physical measure), and we prove upper bounds on the computational resources of computing descriptions of these objects with arbitrary accuracy. We also study how these bounds are affected by different dynamical constraints and provide several examples showing that our bounds are sharp in general. In particular, we exhibit a computable interval map having a unique transitive attractor with Cantor set structure supporting a unique physical measure such that both the attractor and the measure are non-computable.
Starting from a uniquely ergodic action of a locally compact group G on a compact space $X_0$, we consider non-commutative skew-product extensions of the dynamics, on the crossed product $C(X_0)\rtimes _\alpha {\mathbb Z}$, through a $1$-cocycle of G in ${\mathbb T}$, with $\alpha $ commuting with the given dynamics. We first prove that any two such skew-product extensions are conjugate if and only if the corresponding cocycles are cohomologous. We then study unique ergodicity and unique ergodicity with respect to the fixed-point subalgebra by characterizing both in terms of the cocycle assigning the dynamics. The set of all invariant states is also determined: it is affinely homeomorphic with ${\mathcal P}({\mathbb T})$, the Borel probability measures on the one-dimensional torus ${\mathbb T}$, as long as the system is not uniquely ergodic. Finally, we show that unique ergodicity with respect to the fixed-point subalgebra of a skew-product extension amounts to the uniqueness of an invariant conditional expectation onto the fixed-point subalgebra.
Given a presentation of a monoid $M$, combined work of Pride and of Guba and Sapir provides an exact sequence connecting the relation bimodule of the presentation (in the sense of Ivanov) with the first homology of the Squier complex of the presentation, which is naturally a $\mathbb ZM$-bimodule. This exact sequence was used by Kobayashi and Otto to prove the equivalence of Pride’s finite homological type property with the homological finiteness condition bi-$\mathrm {FP}_3$. Guba and Sapir used this exact sequence to describe the abelianization of a diagram group. We prove here a generalization of this exact sequence of bimodules for presentations of associative algebras. Our proof is more elementary than the original proof for the special case of monoids.
In the early 1900s, Maillet [Introduction a la theorie des nombres transcendants et des proprietes arithmetiques des fonctions (Gauthier–Villars, Paris, 1906)] proved that the image of any Liouville number under a rational function with rational coefficients is again a Liouville number. The analogous result for quadratic Liouville matrices in higher dimensions turns out to fail. In fact, using a result by Kleinbock and Margulis [‘Flows on homogeneous spaces and Diophantine approximation on manifolds’, Ann. of Math. (2)148(1) (1998), 339–360], we show that among analytic matrix functions in dimension $n\ge 2$, Maillet’s invariance property is only true for Möbius transformations with special coefficients. This implies that the analogue in higher dimensions of an open question of Mahler on the existence of transcendental entire functions with Maillet’s property has a negative answer. However, extending a topological argument of Erdős [‘Representations of real numbers as sums and products of Liouville numbers’, Michigan Math. J.9 (1962), 59–60], we prove that for any injective continuous self-mapping on the space of rectangular matrices, many Liouville matrices are mapped to Liouville matrices. Dropping injectivity, we consider setups similar to Alniaçik and Saias [‘Une remarque sur les $G_{\delta }$-denses’, Arch. Math. (Basel)62(5) (1994), 425–426], and show that the situation depends on the matrix dimensions $m,n$. Finally, we discuss extensions of a related result by Burger [‘Diophantine inequalities and irrationality measures for certain transcendental numbers’, Indian J. Pure Appl. Math.32 (2001), 1591–1599] to quadratic matrices. We state several open problems along the way.